- **8.** Write notes on the following:
 - (a) Iterative solvers
 - (b) Post processing
 - (c) Parallel computing
 - (d) H-type topologies.

No. of Printed Pages: 04

Roll No.

G341

B. Tech. EXAMINATION, May 2019

(Seventh Semester)

(B. Scheme) (Re-appear Only)

(AER)

AER401B

COMPUTATION FLUID DYNAMICS

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

M-G341 4 560 (2-16/19) M-G341 P.T.O.

Unit I

1. The temperature ratio for an isentropic flow is given by :

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} M^2$$

The value of T_0/T at M = 2.0 is 1.8 find the value at M = 2.5 using finite differences and find the error w.r.t. exact value.

2. Take an example of ID flow in a pipe.

Temperature of air rises as it moves downstream. Calculate the temperature difference analytically and numerically.

Unit II

3. What is finite volume? How is it being used in CFD? Show the descritization of any volume by finite volume method and show the different elements and the computational nodes?

M-G341 2

4. For a convergent divergent nozzle having a shock wave in the diverging section, describe the shock capturing procedure.

Unit III

- **5.** (a) What is the use of finite element method? How many types of elements are used in the process of FEM.
 - (b) What are the characteristics of bi-linear and tri-linear elements? Explain how linear elements can create errors in the solution?
- 6. What are the common classical models based on RANS for turbulence modeling. Explain k-∈ model in detail.

Unit IV

7. What are the different methods of grid generation? What are structured and unstructured grids? Take flow over an airfoil and generate a grid for the purpose of flow analysis.

(2-16/20) M-G341

3

P.T.O.