Unit II

4. (a) If $u = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right)$, then find the value of: 7½

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}}$$

- (b) If u = xyz, $v = x^2 + y^2 + z^2$, w = x + y + z, then find the Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. $7\frac{1}{2}$
- 5. (a) Expand $\sin xy$ in powers of (x-1) and $\left(y-\frac{\pi}{2}\right)$ upto second degree terms. 7½
 - (b) Find $\int_0^a \frac{\log(1+ax)}{1+x^2} dx$ and hence evaluate $\int_0^1 \frac{\log(1+x)}{1+x^2} dx$. 5+2½

4

No. of Printed Pages: 06

Roll No.

A-2

B. Tech. EXAMINATION, Dec. 2018

(First Semester)

(B. Scheme) (Main & Re-appear)

(Common with 2nd Sem.)

MATH101B

MATHEMATICS-I

Time: 3 Hours

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Q. No. **1** is compulsory. Attempt other *four* questions, selecting *one* question from each Unit. Marks are indicated against each.

M-A-2

(2-06/17) M-A-2

P.T.O.

- 1. (a) Expand $f(x) = 2 + x^2 3x^5 + 7x^6$ in powers of (x-1). $3 \times 5 = 15$
 - (b) If $u = x^2 + y^2 + z^2$ and $x = e^{2t}$, $y = e^{2t} \sin 3t$, $z = e^{2t} \sin 3t$, find $\frac{dy}{dt}$.
 - (c) Evaluate $\int_0^a \int_y^a \frac{x \, dx \, dy}{x^2 + y^2}$ by changing into polar coordinates.
 - (d) Find the angle between the tangents to the curve $\vec{r} = t^2i + 2tj t^3k$ at the pts. $t = \pm 1$.
 - (e) If $u = 3x^2y$, $v = xz^2 2y$, find $\nabla(\nabla u \cdot \nabla v)$.

Unit I

- **2.** (a) Test the convergence of the following series:
 - (i) $1 + \frac{1}{2} \cdot \frac{x^2}{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^4}{8} + \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} \cdot \frac{x^6}{12} + \dots \infty$

(ii)
$$\sum_{n=1}^{\infty} \frac{8 \tan^{-1} n}{1 + n^2}$$
 4+3½

- (b) State the Leibnitz test for the convergence of an alternative series and hence determine whether or not $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{\left(3n-2\right)}$ is absolutely convergent? $3\frac{1}{2}+4$
- **3.** (a) Show that : 5

$$e^{x\cos x} = 1 + x + \frac{x^2}{2} - \frac{x^3}{3} + \dots$$

(b) Find the equation of the circle of curvature for the curve $x^3 + y^3 = 3xy$ at

the pt.
$$\left(\frac{3}{2}, \frac{3}{2}\right)$$
.

(c) Find all asymptotes of : 5 $x^{3} - x^{2}y - xy^{2} + y^{3} + 2x^{2} - 4y^{2} + 2xy$ +x + y + 1 = 0

Unit IV

- 8. (a) Show that the angular velocity at any pt. is equal to half the curl of the linear velocity at that pt. of the body. 7½
 - (b) Show that $\operatorname{div}\left(\operatorname{grad} r^{n}\right) = n(n+1)r^{n-2}$ where $\vec{r} = xi + yj + zk$. 7½
- 9. (a) Find the circulation of \vec{F} round the curve C, where $\vec{F} = e^x \sin yi + e^x \cos yj$ and C is the rectangle. Whose vertices are (0, 0), (1, 0), $\left(1, \frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right)$. 7½
 - (b) Verify Gauss divergence theorem for $\vec{F} = 4xzi y^2j + yzk$, taken over the cube bounded by x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.

Unit III

- 6. (a) Find the volume of the solid formed by the revolution of the area enclosed by the curve $xy^2 = a^2(a-x)$ and its asymptote about y-axis. 7½
 - (b) Find the surface generated by the revolution of the loop of the curve $3ay^2 = x(x-a)^2$ about the x-axis. $7\frac{1}{2}$
- 7. (a) Evaluate $\iint_{\mathbb{R}} xy \, dxdy$, where R is the region inside the square |x|+|y|=1. 5
 - (b) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the hyperboloid $x^2 + y^2 z^2 = 1$.
 - (c) Find the relationship between Beta and Gamma function and hence evaluate: 3+2

$$\int_0^1 x^3 (1-x)^{4/3} \, dx.$$

M-A-2 6 1,280

(2-06/19) M-A-2

5

P.T.O.