Unit II

Roll No. \qquad
4. (a) If $u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right)$, then find the value of : $71 / 2$

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}
$$

(b) If $u=x y z, v=x^{2}+y^{2}+z^{2}, w=x+y+z$, then find the Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)} . \quad 71 / 2$
5. (a) Expand $\sin x y$ in powers of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$ upto second degree terms. $71 / 2$
(b) Find $\int_{0}^{a} \frac{\log (1+a x)}{1+x^{2}} d x$ and hence evaluate $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x . \quad \mathbf{5}+\mathbf{2} 1 / 2$

A-2

B. Tech. EXAMINATION, Dec. 2018

(First Semester)
(B. Scheme) (Main \& Re-appear) (Common with 2nd Sem.)

MATH101B
MATHEMATICS-I

Time : 3 Hours]
[Maximum Marks : 75
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Q. No. 1 is compulsory. Attempt other four questions, selecting one question from each Unit. Marks are indicated against each.
P.T.O.

1. (a) Expand $f(x)=2+x^{2}-3 x^{5}+7 x^{6} \quad$ in powers of $(x-1)$. $3 \times 5=15$
(b) If $u=x^{2}+y^{2}+z^{2}$ and $x=e^{2 t}$, $y=e^{2 t} \sin 3 t, z=e^{2 t} \sin 3 t$, find $\frac{d y}{d t}$.
(c) Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}$ by changing into polar coordinates.
(d) Find the angle between the tangents to the curve $\vec{r}=t^{2} i+2 t j-t^{3} k$ at the pts. $t= \pm 1$.
(e) If $u=3 x^{2} y, v=x z^{2}-2 y$, find $\nabla(\nabla u . \nabla v)$.

Unit I

2. (a) Test the convergence of the following series :

$$
\text { (i) } \begin{aligned}
1+\frac{1}{2} \cdot \frac{x^{2}}{4}+ & \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^{4}}{8} \\
& +\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} \cdot \frac{x^{6}}{12}+\ldots \ldots \infty
\end{aligned}
$$

(ii) $\sum_{n=1}^{\infty} \frac{8 \tan ^{-1} n}{1+n^{2}}$
$4+31 / 2$
(b) State the Leibnitz test for the convergence of an alternative series and hence determine whether or not $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(3 n-2)}$ is absolutely convergent ?
$31 / 2+4$
3. (a) Show that : 5

$$
e^{x \cos x}=1+x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+
$$

(b) Find the equation of the circle of curvature for the curve $x^{3}+y^{3}=3 x y$ at the pt. $\left(\frac{3}{2}, \frac{3}{2}\right)$.
(c) Find all asymptotes of :

$$
\begin{aligned}
x^{3}-x^{2} y-x y^{2}+y^{3}+2 x^{2}-4 y^{2}+2 x y & \\
& +x+y+1=0
\end{aligned}
$$

P.T.O.

Unit IV

8. (a) Show that the angular velocity at any pt. is equal to half the curl of the linear velocity at that pt . of the body. 71/2
(b) Show that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=n(n+1) r^{n-2}$ where $\vec{r}=x i+y j+z k$. $71 / 2$
9. (a) Find the circulation of $\overrightarrow{\mathrm{F}}$ round the curve C , where $\overrightarrow{\mathrm{F}}=e^{x} \sin y i+e^{x} \cos y j$ and C is the rectangle. Whose vertices are $(0$, 0), (1,0), $\left(1, \frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right)$. $71 / 2$
(b) Verify Gauss divergence theorem for $\overrightarrow{\mathrm{F}}=4 x z i-y^{2} j+y z k$, taken over the cube bounded by $x=0, x=1 ; \quad y=0, y=1$; $z=0, z=1$.
$71 / 2$

M-A-2
P.T.O.

