5. (a) Solve by the method of variation of parameters :

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}
$$

(b) A second's pendulum which gain 10 seconds per day at one place losses 10 seconds per day at another; compare the acceleration due to gravity at the two places.

Part C

6. (a) Find the Laplace transform of the function :
(i) $\quad f(t)=|t-1|+|t+1|, t \geq 0$
(ii) $f(t)=[t]$
where [] stands for the greatest integer function.
(b) Apply convolution theorem to evaluate :

$$
\mathrm{L}^{-1} \frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}
$$

No. of Printed Pages: 05
Roll No. \qquad

203

B. Tech. EXAMINATION, May 2017

(Second Semester)
(Old Scheme) (Re-appear Only)
(Common for All Branches)

MATHEMATICS-II
MATH-102

Time : 3 Hours]
[Maximum Marks : 100
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Part. All questions carry equal marks.
P.T.O.

Part A

1. (a) Reduce the matrix :

$$
A=\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

to normal form. Hence find the rank of A.
(b) For what values of parameters λ and μ do the system of equations :

$$
\begin{array}{r}
x+y+z=6 \\
x+2 y+3 z=6 \\
x+2 y+\lambda z=\mu
\end{array}
$$

have (i) no solution (ii) unique solution (iii) more than one solution.
2. (a) Find the eigenvalues and eigenvectors of the matrix :

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

M-203
(b) Are the following vectors linearly dependent? If so, find a relation between them. $x_{1}=(2,-1,3,2), x_{2}=(1,3,4,2)$, $x_{3}=(3,-5,2,2)$.

Part B

3. (a) Solve :

$$
\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0
$$

(b) Find the orthogonal trajectories of the family of confocal conics :

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}+\lambda}=1
$$

where λ is a parameter.
4. (a) Solve :

$$
\frac{d^{2} y}{d x^{2}}-4 y=x \sinh x
$$

(b) Solve :

$$
\left(x^{2} \mathrm{D}^{2}-x \mathrm{D}-3\right) y=x^{2}(\log x)^{2}
$$

(2-25) M-203
3
P.T.O.
7. (a) Solve the simultaneous equations:

$$
\frac{d x}{d t}+5 x-2 y=t, \frac{d y}{d t}+2 x+y=0
$$

given that $x=y=0$ when $t=0$.
(b) Solve :

$$
\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y
$$

8. (a) Solve :

$$
\left(p^{2}+q^{2}\right) y=9 z
$$

(b) A rod of length l with insulated sides is initially at a uniform temperature u_{0}. Its ends are suddenly cooled to $0^{\circ} \mathrm{C}$ and are kept at that temperature. Find the temperature function $u(x, t)$.
7. (a) Solve the simultaneous equations:

$$
\frac{d x}{d t}+5 x-2 y=t, \frac{d y}{d t}+2 x+y=0
$$

given that $x=y=0$ when $t=0$.
(b) Solve :

$$
\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y
$$

8. (a) Solve :

$$
\left(p^{2}+q^{2}\right) y=9 z
$$

(b) A rod of length l with insulated sides is initially at a uniform temperature u_{0}. Its ends are suddenly cooled to $0^{\circ} \mathrm{C}$ and are kept at that temperature. Find the temperature function $u(x, t)$.

