(b) Use Romberg's method to compute $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ correct to four decimal places.
5. (a) Given $\frac{d y}{d x}=\frac{y-x}{y+x}$ with initial condition $y=1$ at $x=0$; find y for $x=0.1$ by Euler's method.
(b) Using Runge-Kutta method of order four,
solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2,0.4$.
6. Using Milne's predictor-corrector method, find $y(0.3)$ from :

$$
\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1 .
$$

Find the initial values $y(-0.1), \mathrm{y}(0.1)$ and $y(0.2)$ from the Taylor's series method.

412

B. Tech. EXAMINATION, May 2018

(Fourth Semester)
(Old Scheme) (Re-appear Only)
(EE, ECE, CHE, EEE, AEI, IC)
MATH202
NUMERICAL METHODS

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Part. All questions carry equal marks.

Part A

1. (a) Fit a parabola $y=a+b x+c x^{2}$ to the following data :

x	y
2	3.07
4	12.85
6	31.47
8	57.38
10	91.29

(b) Determine $f(x)$ as a polynomial in x for the following data :

x	$f(x)$
-4	1245
-1	33
0	5
2	9
5	1355

2. (a) Using Newton-Raphson formula method find a root of the equation $3 x=\cos x+1$, correct to four places of decimal.
(b) Using bisection method, find a root of the equation $x^{3}-4 x-9=0$, correct to four decimal places.
3. (a) Solve the following system of equation by Gauss-Seidel method :

$$
\begin{array}{r}
20 x+y-2 z=17 \\
3 x+20 y+4 z=13 \\
3 x+4 y+5 z=40
\end{array}
$$

(b) Solve by Gauss-Jordan method :

$$
\begin{aligned}
x+y+z & =9 \\
2 x-3 y-z & =-18 \\
2 x-3 y+20 z & =25
\end{aligned}
$$

4. (a) From the following data, find $d y / d x$ at $x=1.1$

x	y
1.0	7.989
1.1	8.403
1.2	8.781
1.3	9.129
1.4	9.451
1.5	9.750
1.6	10.031

P.T.O.
7. Given the values of $u(x, y)$ on the boundary of the square region as shown in figure below, evaluate the function $u(x, y)$ satisfying the Laplace's equation $\nabla^{2} u=0$ at the pivotal points using Gauss-Seidal method :

8. Find the value of $u(x, t)$ satisfying the parabolic equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ and the boundary conditions $u(0, t)=0=u(8, t)$ and $u(x, t)=4 x-\frac{1}{2} x^{2}$ at the points $x=i$: $i=0,1,2, \ldots \ldots ., 7$ and $t=\frac{1}{8} j: j=0,1,2, \ldots, 5$.

