- (b) Use Romberg's method to compute $\int_{0}^{1} \frac{1}{1+x^2} dx$ correct to four decimal places.
- 5. (a) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0; find y for x = 0.1 by Euler's method.
 - (b) Using Runge-Kutta method of order four, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2, 0.4.
- **6.** Using Milne's predictor-corrector method, find y(0.3) from :

$$\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 1$.

Find the initial values y(-0.1), y(0.1) and y(0.2) from the Taylor's series method.

4

M-412

No. of Printed Pages: 05

Roll No.

412

B. Tech. EXAMINATION, May 2018

(Fourth Semester)

(Old Scheme) (Re-appear Only)

(EE, ECE, CHE, EEE, AEI, IC)

MATH202

NUMERICAL METHODS

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Part. All questions carry equal marks.

(3-33/15)M-412 P.T.O.

Part A

1. (a) Fit a parabola $y = a + bx + cx^2$ to the following data:

X	\mathcal{Y}
2	3.07
4	12.85
6	31.47
8	57.38
10	91.29

(b) Determine f(x) as a polynomial in x for the following data :

$$x$$
 $f(x)$
 -4 1245
 -1 33
 0 5
 2 9
 5 1355

2. (a) Using Newton-Raphson formula method find a root of the equation $3x = \cos x + 1$, correct to four places of decimal.

2

- (b) Using bisection method, find a root of the equation $x^3 4x 9 = 0$, correct to four decimal places.
- **3.** (a) Solve the following system of equation by Gauss-Seidel method :

$$20x + y - 2z = 17$$
$$3x + 20y + 4z = 13$$
$$3x + 4y + 5z = 40$$

(b) Solve by Gauss-Jordan method:

$$x + y + z = 9$$
$$2x - 3y - z = -18$$
$$2x - 3y + 20z = 25$$

4. (a) From the following data, find dy/dx at x = 1.1

\boldsymbol{x}	y
1.0	7.989
1.1	8.403
1.2	8.781
1.3	9.129
1.4	9.451
1.5	9.750
1.6	10.031

(3-33/16)M-412

3

P.T.O.

7. Given the values of u(x, y) on the boundary of the square region as shown in figure below, evaluate the function u(x, y) satisfying the Laplace's equation $\nabla^2 u = 0$ at the pivotal points using Gauss-Seidal method:

8. Find the value of u(x, t) satisfying the parabolic equation $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ and the boundary conditions u(0, t) = 0 = u(8, t) and $u(x, t) = 4x - \frac{1}{2}x^2$ at the points x = i: $i = 0, 1, 2, \dots, 7$ and $t = \frac{1}{8}j$: $j = 0, 1, 2, \dots, 5$.

7. Given the values of u(x, y) on the boundary of the square region as shown in figure below, evaluate the function u(x, y) satisfying the Laplace's equation $\nabla^2 u = 0$ at the pivotal points using Gauss-Seidal method:

8. Find the value of u(x, t) satisfying the parabolic equation $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ and the boundary conditions u(0, t) = 0 = u(8, t) and $u(x, t) = 4x - \frac{1}{2}x^2$ at the points x = i: $i = 0, 1, 2, \dots, 7$ and $t = \frac{1}{8}j : j = 0, 1, 2, \dots, 5$.

M-412 5 200

(3-33/17)M-412

5

200