Unit IV

- 7. (a) What are the different forms of biomass available as biofuels?
 - (b) Describe in detail the various models of biogas plants.8
- 8. (a) What do you understand by energy plantation?
 - (b) Explain the three aerobic and anaeriobic bio-conversion processes for the biomass energy applications.9

No. of Printed Pages: 04 Roll No.

G-6

B. Tech. EXAMINATION, Dec. 2018

(Seventh Semester)

(B. Scheme) (Main & Re-appear)

(Common for all Branches)

EEE457B

ENERGY RESOURCES AND TECHNOLOGY

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-20/5) M-G-6 P.T.O.

Unit I

- (a) Discuss the possibility of exploiting the non-conventional energy in India.
 - (b) What is the potential of geothermal resources in India?
 - (c) What do you understand by greenhouse effect?
- 2. (a) Give a comparative study of thermal, hydro, nucler and gas power plants. 7
 - (b) With the help of schematic diagram explain the working of closed OTEC cycle power plant.8

Unit II

- 3. (a) Explain the principle of conversion of solar energy to heat. Explain fixed mirror solar concentrator.
 - (b) Describe a solar cooling system basedon vapour compression system.

M-G-6 2

4. (a) Derive an expression for solar day length.

Calculate the number of daylight hours in Srinagar for 1st January and 1st July.

Take latitude of Srinagar as 34°05′ N.

10

(b) With the help of schematic diagram explain the working of solar water heater.

5

Unit III

- 5. (a) What do you understand by the behaviour and structure of wind?
 - (b) Describe horizontal axis type aerogenerator. Give advantages of vertical axis windmill over horizontal type. 10
- 6. (a) Derive an expression for the total power of a wind stream.
 - (b) Find the maximum power output of a turbine if wind speed = 8 m/s, air density = 1.2 kg/m³ and rotor diameter = 60 m.

(3-20/6) M-G-6 P.T.O.