No. of Printed Pages: 03 Roll No.

E-62

B. Tech. EXAMINATION, Dec. 2018

(Fifth Semester)

(B. Scheme) (Main & Re-appear)

(BT)

BT303B

BIOREACTOR ANALYSIS AND DESIGN

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-08/15) M-E-62

P.T.O.

Unit I

- 1. (a) What is mathematical modelling?

 Describe how you will model a CSTR?
 - (b) What is residence time distribution? Define E, C and F curves. $7\frac{1}{2}\times2=15$
- **2.** Write notes on the following:
 - (a) Fluidized bed reactor
 - (b) Plug flow reactor
 - (c) Airlift reactor.

 $5 \times 3 = 15$

Unit II

- **3.** Write notes on the following:
 - (a) Control of a bioreactor
 - (b) Kalman filter
 - (c) Physical and chemical environment of a bioreactor. 5×3=15
- **4.** (a) Write applications and limitations of a solid state fermenter.
 - (b) How will you design a bioreactor for immobilized microbial cells ? $7\frac{1}{2} \times 2=15$

M-E-62

2

Unit III

- **5.** (a) Describe hollow fiber reactors.
 - (b) Membrane reactors for animal cell culture applications. $7\frac{1}{2} \times 2 = 15$
- 6. What are gas liquid reactors? How are they beneficial for biotechnological applications.Design one with suitable example.

Unit IV

- 7. Describe the following:
 - (a) Tank in series model
 - (b) Series and parallel reactions
 - (c) Kinetics of enzyme deactivation.5×3=15
- What are sterile and non-sterile operations?Design a reactor in series with recycle.

(2-08/16) M-E-62

3

70