No. of Printed Pages: 02 Roll No.

F41

B. Tech. EXAMINATION, 2020

(Sixth Semester)

(B Scheme)

(Main & Re-appear)

CHE

CHE302B

Chemical Reactions Engineering-II

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks. Assume missing data if any.

Unit I

- 1. (a) Write a note on Physical Adsorption and Chemisorption.
 - (b) Write briefly on void volume and prove volume distribution methods used for solid catalysts. Also taking into account pore diffusion resistance along with a first order chemical reaction in a single cylindrical pore. Derive the following:
 C_A / C_{AS} = cosh m (L X)/ cosh mL.

5

2. A packed bed catalytic reactor is to be used to treat 1650 moles of pure reactant per hour at 190°C and pressure 3.80 bar. Fractional volume change during the reaction is 3.0. The concentration data is available ahead:

(1-06/56) M-F41 P.T.O.

	R_A	mol A/(kg.cat.hr) :	3.389	4.545	6.451	9.523	12.5	
	It is desired to have 25% conversion of the reactant. Calculate hours has the quantity							
	of the catalyst required in the packed bed.							
Unit II								
3.	(a) Derive/write a note on Catalyst de activation.(b) Explain Waesz Prater criterion in detail.							
4.	(a)	Explain various steps involved in modelling diffusion without reaction. 5						
	(b)	Species A, present in dilute concentration is diffusing at steady state from bulk						
	()	fluid through a stagnant film of B of thickness Δ to external surface of catalyst.						
	Concentration of A at external boundary is C_{AB} and at external catalyst surface							
	is C_{AS} . Neglect curvature. Determine concentration profile and flux of A to							
		surface using shell balance, using General Balance equation. 10						
Unit III								
5. (a) Write a note on effective diffusivity and define					e tortousit	y.	10	
	(b)	(b) Derive differential equation describing diffusion and reaction. Also derive internation						
	effectiveness factor for first order reaction in a spherical catalyst pellet.							
6.	(a)	How do we estimate diffu	sion and re	action lin	nited regin	nes ?	8	
	(b) What is Weisz prater criterion for internal diffusion.						7	
Unit IV								
7.	Write a short note on Slurry reactors and fixed bed reactors.						15	
8.	(a) Derive the design equation for fluidised bed reactor.					5		
	(b)	(b) Give the fundamentals of non-isothermal reactors.						

: 0.0415 0.0484 0.0567 0.0692 0.0907

C_A mol/lt

20