	т	•	4	•	T 7
	11	11	t	•	1/
L	J	ш	ι	1	•

7. Write a note on Tidal energy. 15

8. Differentiate between wave and hydrogen **15** energy.

No. of Printed Pages: 04

Roll No.

G83

B. Tech. EXAMINATION, May 2019

(Seventh Semester)

(B. Scheme) (Re-appear Only)

(CHE)

CHE405B

ENERGY TECHNOLOGY

Time : 3 *Hours*] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt Five questions in all, selecting at least one question from each Unit. Assume missing data if any.

M-G83 40 (2-15/15) M-G83

P.T.O.

Unit I

- 1. (a) Explain the points in favour of 'in situ' theory. 5
 - (b) Differentiate between proximate and ultimate analysis. 10
- 2. (a) Explain in detail the objectives of coal washing. 8
 - (b) Explain in detail the salient features of how temperature carbonisation and high temperature carbonisation.7

Unit II

- 3. (a) Depending an the nature of hydrocarbon present in it, crude petroleum is classified into many types. Explain any *one* type in detail.
 - (b) Differentiate between thermal and catalytic cracking in detail. 7
- **4.** (a) Explain Dubbs thermal cracking process in detail. **8**
 - (b) Explain the effect of variables in catalytic reforming. 7

M-G83 2

Unit III

- 5. (a) Explain the reaction zones in a producer gas.5
 - (b) Explain the different between natural and artificial draught. 10
- 6. (a) What is Pulsating combustion? Explain.5
 - (b) Explain any *one* method in detail for burning gaseous fuels. 5
 - (c) The fuel gas from an industrial furnace have the following composition by volume:

$$CO_2 = 11.73\%$$
, $CO = 0.2\%$, $N_2 = 0.09\%$, $O_2 = 6.81\%$, $N_2 = 81.1\%$

Calculate the percentage excess air employed in the combustion, if the loss of carbon in clinker and ash is 1% of the fuel used and fuel has following composition by weight:

$$C = 74\%$$
, $H_2 = 5\%$, $O_2 = 5\%$, $N_2 = 1\%$, $S = 1\%$, $H_2O = 9\%$ and $ash = 5\%$

(2-15/16) M-G83

3

P.T.O.