\qquad

Unit II

3. (a) Fit a second degree parabola to the following data :

\mathbf{X}	\mathbf{Y}
1989	352
1990	356
1991	357
1992	358
1993	360
1994	361
1995	361
1996	360
1997	359

(b) A manufacturer claims that only 4% of his products supplied by him are defective. A random sample of 600 products contained 36 defective. Test the claim of the manufacturer.7

8

18B1
B.Tech. EXAMINATION, May 2019
(Second Semester)
(C-Scheme) (Main Only)
(CSE)
MATH102C
MATHEMATICS-II

Time : 3 Hours] [Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt Five questions in all, along with compulsory question, selecting one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) The distribution of marks in Hindi of 60 students of 10th class is as follows :

Marks	Frequency
$0-10$	2
$10-20$	3
$20-30$	12
$30-40$	8
$40-50$	10
$50-60$	17
$60-70$	4
$70-80$	3
$80-90$	1

Calculate the measure of Kurtosis. 8
(b) Six dice are thrown 729 times. How many times do you expect at least three dice to show a five or six ?

7
2. (a) Six coins are tossed 6400 times. Using Poisson distribution determine the approximate probability of getting six heads x times.8
(b) In a factory machines A, B and C manufacture respectively $25 \%, 35 \%$ and 40% of the total bolt. There are $5 \%, 4 \%$ and 2% bolts are defective respectively. A bolt is drawn at random from the product and found defective. What is probability that it is drawn from machine B ?

8

(Compulsory Question)

9. (a) Write 3rd moment around mean and what it is called ?
(b) Write probability density function of the normal distribution and calculate total area under normal probability curve.
(c) Find the straight line that best fits the following data :

$$
\begin{array}{ccccccc}
x & : & 1 & 2 & 3 & 4 & 5 \\
y & : & 14 & 27 & 40 & 5 & 68
\end{array}
$$

(d) Discuss multinomial distribution in brief.
(e) The density function of a random varible X is given by :

$$
f(x)=k x(2-x)
$$

Find mean deviation about mean.
4. (a) A random sample of 900 members has a mean 3.4 cm . Can it be reasonably regarded as a sample from a large population of mean 3.2 cm and S.D. 2.3 cms .
(b) Describe Chi-square test for goodness of fit. The following table shows the distribution of digits in numbers choosen at random from a telephone directory.

Digits	Frequency
0	1026
1	1107
2	997
3	966
4	1075
5	933
6	1107
7	972
8	964
9	853

Test whether the digits may be taken to occur equally frequently in the directory.

Unit III

5. (a) An urn contains 10 white and 3 black balls, while another urn contains 3 white and 4 black balls. Two balls are drawn from the first urn and put into the second urn and then a ball is drawn from the latter. What is the probability that it is white ball?
(b) A die is tossed thrice. A success is getting 1 or 6 on a toss. Find mean and variance of the number of successes.
6. (a) A box contains 5 red balls, 4 white balls and 3 blue balls. A ball is selected at random from the box, its colour is noted and then the ball is replaced. Find the probability that out of 6 balls selected in this manner, 3 are red, 2 are white and 1 is blue.

7
(b) Find $\mathrm{E}(\mathrm{X}), \mathrm{E}\left(\mathrm{X}^{2}\right)$ and $\mathrm{E}[\mathrm{X}-\overline{\mathrm{X}}]^{2}$ for the probability distribution :

$$
\begin{array}{c:ccccc}
\mathrm{X} & : & 8 & 12 & 16 & 20 \\
\dot{\mathrm{P}}(\mathrm{x}) & : & \frac{1}{8} & \frac{1}{6} & \frac{3}{8} & \frac{1}{4} \\
\hline & \frac{1}{12}
\end{array}
$$

State Chebyshev's inequality.

Unit IV

7. (a) A continuous random variable X having values between 0 and 4 has a density function given by $\rho(\mathrm{X})=\frac{1}{2}-b X$, where b is constant :
(i) Calculate b
(ii) Find $\mathrm{P}(1<\mathrm{X}<2)$.
(b) Discuss various properties of normal distribution function.

7
8. (a) Let the random variables X and Y have the joint pdf :

$$
f(x, y)=\left\{\begin{array}{lll}
x+y & 0<x<1, & 0<y<1 \\
0 & \text { elsewhere } &
\end{array}\right.
$$

Find covariance of X and Y . 7
(3-09/20)M-18B1
7
P.T.O.

