C22

B. Tech. EXAMINATION, 2020
(Third Semester)
(B Scheme) (Re-appear Only)
(ECE)
EE211B
NETWORK ANALYSIS AND SYNTHESIS

Time : $2 ½$ Hours] [M aximum M arks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Four questions in all. All questions carry equal marks.
(5)M -C22

1

1. Find the Laplace transforms of the following functions :
(a) $e^{-a t} U(t)$
(b) $e^{-a t} U(t-b)$
(c) $e^{-a(t-b)} U(t-b)=e^{a b} \cdot e^{-a t} U(t-b)$
(d) $e^{-a(t-b)} U(t-c)=e^{a b} \cdot e^{-a t} U(t-c)$.
2. Find the response of the system whose system function $\mathrm{H}(\mathrm{s})=\mathrm{Y}(\mathrm{s}) / \mathrm{X}(\mathrm{s})=1 / \mathrm{s}+1$ for the input :
(i) $\quad \mathrm{x}(\mathrm{t})=\delta(\mathrm{t})$ (i.e. impulse response)
(ii) $x(t)=e^{-2 t}$.
3. Show that the overall transmission parameter matrix for cascaded Two 2-port networks is simply the matrix products of transmission parameters for each individual 2-port network in cascade.
(5)M-C22
4. A two-port T-network has open circuit impedances $Z_{10}=900$ ohm, $Z_{20}=900$ ohm and short circuit impedance $\mathrm{Z}_{1 \mathrm{~s}}=650$ ohm. Determine the parameters of the T-network.
5. (a) Design a low pass filter (both $\pi(\mathrm{pi})$ and T-networks) having a cut-off frequency of 1 kHz to operate with a terminated load resistance of 200 ohms.
(b) Find the frequency at which this filter offers attenuation of 19.1 dB .
6. The reduced incidence matrix of a graph is given by :
$\left.\begin{array}{cc}\text { Nodes } \backslash \text { Branches } \\ \text { a } \\ \mathrm{b} \\ \mathrm{c}\end{array} \quad \begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & -1 & -1 & 1 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0\end{array}\right]$

Draw the oriented graph. Select a tree and find f-cut set matrix.
(5)M-C22
7. Test the following polynomial for its Hurwitz Character :

$$
\begin{aligned}
P(s)=s^{8}+ & 3 s^{7}+10 s^{6}+24 s^{5}+35 s^{4} \\
& +57 s^{3}+50 s^{2}+36 s+24
\end{aligned}
$$

8. An impedance is given by :

$$
\frac{\mathrm{Z}(\mathrm{~s})=8\left(\mathrm{~s}^{2}+1\right)\left(\mathrm{s}^{2}+3\right)}{\mathrm{s}\left(\mathrm{~s}^{2}+2\right)\left(\mathrm{s}^{2}+4\right)}
$$

Realize the network in (i) Foster-I form and
(ii) Cauer-II form.

