Unit IV

- 7. (a) Derive the expressions for input impedance and standing wave ratio of transmission lines.
 - (b) Explain open and short circuit lines. 6
- **8.** (a) Describe briefly about Reflection Coefficient and Transmission Coefficient.

10

(b) Explain Smith's chart and its application.

5

No. of Printed Pages: 04

D25

Roll No.

B.Tech. EXAMINATION, May 2019

(Fourth Semester)

(B. Scheme) (Main & Re-appear)

(ECE)

ECE212B

FIELD AND WAVES

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-03/18)M-D25 P.T.O.

Unit I

- 1. (a) Determine the divergence and curl of the vector $\vec{A} = xa_x + y^2a_y + y^2a_z$. 5
 - (b) Derive the expression for electric field intensity due to a circular surface charge.

- (c) Define dipole moment. 4
- **2.** (a) Apply Gauss's law to an:
 - (i) Infinite line charge
 - (ii) Infinite sheet of charge. 9
 - (b) Electric field us conservative field. Justify.

6

6

Unit II

- 3. (a) Derive an espression for energy density in a magnetic field.
 - (b) Derive the expression for magnetic flux density and magnetic field intensity due to an infinitely long conductor.8

4. Give short notes on the following:

- (a) Magnetic Vector Potential
- (b) Biot-Savart's Law
- (c) Ampere's Law of Force. 20

Unit III

- 5. (a) Derive Maxwell equation in point and integral forms.
 - (b) Write down the magnetic boundary conditions.
- 6. (a) Calculate the intrinsic impedance, the propagation constant and the wave velocity for a conducting medium in which $\sigma = 58$ ms/m, $\mu_r = 1$ at a frequency of f = 100 MHz.
 - (b) Write the wave equations in a conducting medium.5

M-D25 2

(3-03/19)M-D25 3 P.T.O.