Part D

- 7. A photodiode has a quantum efficiency of 65% when photons of energy 1.5×10^{-19} J are incident upon it.
 - (a) At what wavelength is the photodiode operating?
 - (b) Calculate the incident optical power required to obtain a photo current of 2.5 μA the photodiode is operating as described above.
 15
- **8.** Write short notes on any *two* of the following:
 - (a) Comparison of LED and LASER as optical sources.
 - (b) P-i-N diode population inverse in lasers.

7,8

No. of Printed Pages: 04

Roll No.

H46

B.Tech. EXAMINATION, May 2019

(Eighth Semester)

(B. Scheme) (Main & Re-appear)

ECE412B

OPTICAL COMMUNICATION

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit.

Part A

1. (a) Why an optical fiber provides more signal security and immunity to interference as

(3-20/8) M-H46 P.T.O.

M-H46 4 110

		compared to other means of		(c)	The overall signal attenuation for a 10	
		transmission?			km optical link using the same fiber with	
	(b)	Draw and electromagnetic spectrum and			splices at 1 km link intervals, each giving	,
		show where optical communication takes			an attenuation of 1 dB;	
		places. 7		(d)	The numerical I/P/O/P power ratio in (c).	
2.	Diffe	erentiate :			15	
	(a)	Single Mode and Multimode Fibers	4.	(a)	Explain different types of disperson in	
	(b)	Step Index and Grade Index Fibers. 15			optical fibers. How dispersion affects	
					optical bandwidth?	
		Part B		(b)	What is dispersion flattered fiber? 5	,
			Part C			
3.	Whe	en the mean optical power launched into			Part C	
3.		en the mean optical power launched into km length of fiber is 120 μW, the mean			Part C	
3.	an 8	• •	5.	(a)	Part C What is meant by fusion splicing of	•
3.	an 8	km length of fiber is 120 μ W, the mean	5.	(a)		
3.	an 8	km length of fiber is 120 μ W, the mean cal power at the fiber o/p is 3 μ W.	5.	(a) (b)	What is meant by fusion splicing of	
3.	an 8 option	km length of fiber is 120 μ W, the mean cal power at the fiber o/p is 3 μ W.	5.		What is meant by fusion splicing of optical fibers?	}
3.	an 8 option	km length of fiber is 120 μ W, the mean cal power at the fiber o/p is 3 μ W. The overall signal attenuation or loss in	 6. 	(b)	What is meant by fusion splicing of optical fibers? What are couplers and their function?	,
3.	an 8 option	km length of fiber is 120 μ W, the mean cal power at the fiber o/p is 3 μ W. Examine : The overall signal attenuation or loss in decibels through the fiber assuming there		(b)	What is meant by fusion splicing of optical fibers? What are couplers and their function? 7 w a neat diagram explaining edge emitter	
3.	an 8 optic Dete (a)	km length of fiber is 120 μ W, the mean cal power at the fiber o/p is 3 μ W. Examine: The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices.		(b)	What is meant by fusion splicing of optical fibers? What are couplers and their function? 7 w a neat diagram explaining edge emitter	