No. of Printed Pages: 06	Roll No

18C11

B. Tech. EXAMINATION, 2020

(Third Semester)

(C Scheme) (Main & Re-appear)

(EE)

EE201C

ELECTRICAL CIRCUIT ANALYSIS

Time: 2½ Hours] [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Four* questions in all. All questions carry equal marks.

(3)M-18C11 1

- 1. (a) State and explain maximum power transfer theorem for a.c. circuits. Derive the condition for maximum power transfer.
 - (b) Use mesh analysis to find the current I_o in the circuit.

2. (a) Find the Thevenin equivalent of the circuit at terminals *a-b*.

(b) Determine v_0 in the circuit using superposition principle.

- 3. (a) What is dot convention? How does it help in solving magnetically coupled circuits?
 - (b) Find i(t) in the circuit. Assume that the circuit has reached steady state at t = 0.

(3)M-18C11

- 4. (a) What are the advantages of three-phase systems over single phase systems? What is phase sequence and its significance in three-phase systems?
 - (b) Calculate the power supplied to the $10\,\Omega$ resistor in the ideal transformer circuit.

- **5.** (a) What is convolution integral? Where are its applications? State and prove convolution theorem.
 - (b) Find the inverse Laplace transform of $F(s) = \frac{(7s+2)}{s^3 + 3s^2 + 2s}.$

(3)M-18C11

6. Explain the phenomenon of resonance in series R-L-C circuit.

In the circuit, $R=2~\Omega,~L=1~mH$ and $C=0.4~\mu F$. Find the resonant frequency and half power frequencies; quality factor and bandwidth; and amplitude of the current at $\omega_0,~\omega_1$ and ω_2 .

- 7. (a) Explain the transmission and inverse transmission parameters of a two port network.
 - (b) Find the y-parameters of the pi network.

(3)M-18C11

- **8.** (a) Derive the relationship between ABCD and Z-parameters for a two port network.
 - (b) Find the hybrid parameters for the given two port network.

(3)M-18C11

6

140