No. of Printed Pages: 04	Roll No
110. Ut I I IIIIteu I ages . UT	14011 140

C13

B. Tech. EXAMINATION, 2020

(Third Semester)

(B Scheme) (Re-appear Only)

(EE, EEE)

EE203B

NETWORK ANALYSIS-I

Time: 2½ Hours] [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Four* questions in all. All questions carry equal marks.

(2)M-C13

- 1. (a) A circuit consists of three parallel branches. The branch currents are given as $i_1 = 10 \sin wt$; $i_2 = 20 \sin (wt + 60)$ and $i_3 = 7.5 \sin (wt 30)$. Find the resultant current and express it in the form $i = I_m(wt + \phi)$. If the supply frequency is 50 Hz, calculate the resultant current when (a) t = 0, (b) = 0.001s.
 - (b) State and explain maximum power transfer theorem with an example.
- 2. Find the current through the (3 + j4) ohm impedance in the network by superposition theorem and verify the result by Nodal analysis:

3. (a) A balanced star connected load is supplied by a 415v; 50 Hz three phase (2)M-C13

system. Current in each phase is 20 A and lags 30° behind its phase voltage find the (a) phase voltage (b) power (c) circuit parameters. Also power consumed when the same load is connected in delta across the same supply.

- (b) Explain p-spice model for poly-phase circuits.
- 4. (a) A certain wave form has a form factor of 1.2 and a peak factor of 1.5. If the maximum value is 100, find the RMS value and average value.
 - (b) Derive an expression for line and phase voltages and currents relationship in case of delta connection.
- 5. For the network shown in fig. a sinusoidal voltage source $v = 150 \sin (500t + \theta)$ volts is applied at a time when $\theta = 0$. Find the expression for the current i(t).

6. Find Laplace transform of the waveform shown in Fig. :

7. Find trigonometric Fourier series of wave form shown in fig. draw the mangitude and phase spectrum:

8. Evaluate the Fourier series coefficient of the continuous time period signal :

$$x(t): X(t) = 1 + \sin wt + 2\cos wt + \cos[2wt + \pi/4]$$

(2)M-C13