Unit III

- 5. Give an algorithm to solve load flow equations using decoupled load flow. Consider both PQ and PV buses.
- **6.** The following is the system data for a load flow solution :

The line admittances:

Impedance for sample system:

Bus Code	Admittance		
1-2	2-j8.0		
1-3	1-j4.0		
2-3	0.666+j2.664		
2-4	1-j4.0		
3-4	2-j8.0		

The schedule of active and reactive powers are :

Bus Code	P	Q	\mathbf{V}	Remarks
1	_	_	1.06	Slack
2	0.5	0.2	1+j0.0	PQ
3	0.4	0.3	1+j0.0	PQ
4	0.3	0.1	1+i0.0	PO

Determine the voltages at the end of first iteration by using Gauss-Siedel method. Take $\alpha = 1.6$.

M-H-22 4

No. of Printed Pages: 05

Roll No.

H-22

B. Tech. EXAMINATION, Dec. 2017

(Eighth Semester)

(B. Scheme) (Re-appear Only)

(EE, EEE)

EE-404-B

COMPUTER APPLICATIONS TO POWER SYSTEM ANALYSIS

Time: 3 Hours [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this

regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-22/11)M-H-22

P.T.O.

Unit I

- Describe in detail the power flow equations of transmission lines.
- 2. (a) Define and explain the following: 6
 - (i) tree
 - (ii) co-tree
 - (iii) link
 - (iv) graph with the help of examples.
 - (b) Find fundamental cut-set matrix and obtain KCL equations of fig. (1). 9

Fig. 1

Unit II

- 3. (a) Describe the terms primitive admittance matrix and incidence matrix.6
 - (b) Describe in detail the steps involved in the building algorithm for the bus in impedance matrix.9
- 4. (a) Develop an expression for Z_{Bus} (Bus impedance matrix) using bus incidence matrix A formulation.
 - (b) A primitive Y matrix is:

Form Y_{Bus}.

8

M-H-22 2

(3-22/12)M-H-22

3

P.T.O.

Unit IV

- 7. (a) Derive an expression for fault current for single line-to-ground fault.
 - (b) A 3-phase, 11 kV, 25 MVA generator with $X_0 = 0.05$ p.u., $X_1 = 0.2$ p.u. and $X_2 = 0.2$ p.u. is grounded through a reactance of 0.3. Calculate the fault currents for a single line to ground fault.

8

- 8. (a) Express unbalanced phase currents in a3-φ system in terms of symmetrical components.
 - (b) The voltages across a 3- ϕ unbalanced load are $V_a = 300$ V, $V_b = 300 \angle -90^{\circ}$ and $V_c = 800 \angle 143.1^{\circ}$ respectively. Determine the sequence components of voltages. Phase sequence is abc.

Unit IV

- 7. (a) Derive an expression for fault current for single line-to-ground fault.
 - (b) A 3-phase, 11 kV, 25 MVA generator with $X_0 = 0.05$ p.u., $X_1 = 0.2$ p.u. and $X_2 = 0.2$ p.u. is grounded through a reactance of 0.3. Calculate the fault currents for a single line to ground fault.

8

- 8. (a) Express unbalanced phase currents in a 3-φ system in terms of symmetrical components.
 - (b) The voltages across a 3- ϕ unbalanced load are $V_a = 300 \text{ V}$, $V_b = 300 \angle -90^\circ$ and $V_c = 800 \angle 143.1^\circ$ respectively. Determine the sequence components of voltages. Phase sequence is *abc*. **8**

M-H-22 5 270

(3-22/13)M-H-22 5