Unit III

5. Give an algorithm to solve load flow equations using decoupled load flow. Consider both PQ and PV buses.

15
6. The following is the system data for a load flow solution :
The line admittances :
Impedance for sample system :

Bus Code	Admittance
$1-2$	$2-\mathrm{j} 8.0$
$1-3$	$1-\mathrm{j} 4.0$
$2-3$	$0.666+\mathrm{j} 2.664$
$2-4$	$1-\mathrm{j} 4.0$
$3-4$	$2-\mathrm{j} 8.0$

The schedule of active and reactive powers are :

Bus Code	\mathbf{P}	\mathbf{Q}	\mathbf{V}	Remarks
1	-	-	1.06	Slack
2	0.5	0.2	$1+\mathrm{j} 0.0$	PQ
3	0.4	0.3	$1+\mathrm{j} 0.0$	PQ
4	0.3	0.1	$1+\mathrm{j} 0.0$	PQ

Determine the voltages at the end of first iteration by using Gauss-Siedel method. Take $\alpha=1.6$.

15
P.T.O.

Unit I

1. Describe in detail the power flow equations of transmission lines.
2. (a) Define and explain the following : 6
(i) tree
(ii) co-tree
(iii) link
(iv) graph with the help of examples.
(b) Find fundamental cut-set matrix and obtain KCL equations of fig. (1). 9

Fig. 1
3. (a) Describe the terms primitive admittance matrix and incidence matrix.
(b) Describe in detail the steps involved in the building algorithm for the bus in impedance matrix.
4. (a) Develop an expression for $\mathrm{Z}_{\text {Bus }}$ (Bus impedance matrix) using bus incidence matrix A formulation.
(b) A primitive Y matrix is:

$$
\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& 3 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
-0.083 & -0.417 & 0 & -1.042 & 0 \\
0 & 2.083 & 0 & 0.208 & 0 \\
-1.042 & 0.208 & 2.0 & 0 & 0 \\
0 & 0 & 0 & 0.021 & 0 \\
0
\end{array}\right)
$$

Form $Y_{B u s}$.

Unit IV

7. (a) Derive an expression for fault current for single line-to-ground fault.

7
(b) A 3-phase, $11 \mathrm{kV}, 25 \mathrm{MVA}$ generator with $\mathrm{X}_{\mathrm{o}}=0.05$ p.u., $\mathrm{X}_{1}=0.2$ p.u. and $X_{2}=0.2$ p.u. is grounded through a reactance of 0.3 . Calculate the fault currents for a single line to ground fault.
8. (a) Express unbalanced phase currents in a 3- ϕ system in terms of symmetrical components.
(b) The voltages across a 3- ϕ unbalanced load are $\mathrm{V}_{a}=300 \mathrm{~V}, \mathrm{~V}_{b}=300 \angle-90^{\circ}$ and $\quad \mathrm{V}_{c}=800 \angle 143.1^{\circ}$ respectively. Determine the sequence components of voltages. Phase sequence is $a b c$. 8
7. (a) Derive an expression for fault current for single line-to-ground fault.

7
(b) A 3-phase, $11 \mathrm{kV}, 25 \mathrm{MVA}$ generator with $X_{o}=0.05$ p.u., $X_{1}=0.2$ p.u. and $X_{2}=0.2$ p.u. is grounded through a reactance of 0.3. Calculate the fault currents for a single line to ground fault. 8
8. (a) Express unbalanced phase currents in a 3- ϕ system in terms of symmetrical components.7
(b) The voltages across a 3- ϕ unbalanced load are $\mathrm{V}_{a}=300 \mathrm{~V}, \mathrm{~V}_{b}=300 \angle-90^{\circ}$ and $\quad V_{c}=800 \angle 143.1^{\circ}$ respectively. Determine the sequence components of voltages. Phase sequence is $a b c$.

