No. of Printed Pages: 05 Roll No.

C181

B. Tech. EXAMINATION, 2020

(Third Semester)

(B Scheme) (Re-appear Only)

(IT)

IT201B

DISCRETE MATHEMATICAL STRUCTURES

Time: 2½ Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Four* questions in all. All questions carry equal marks.

1

- 1. Let A be a set with 10 distinct elements:
 - (a) How many different binary relations on A are there ?
 - (b) How many of them are reflexive?
 - (c) How many of them are symmetric?
 - (d) How many of them are reflexive and symmetric ?
 - (e) How many of them are total ordering relation ?
- 2. (a) Show that the transitive closure of a symmetric relation is symmetric. Is the transitive closure of a antisymmetric relation is always antisymmetric.
 - (b) Write a note on Multisets.

3. Consider the graph shown in fig. below:

Give an example of the following:

- (a) An elementary path
- (b) A simple path which is not elementary
- (c) A simple circuit
- (d) A path which is not simple
- (e) A circuit which is not simple.
- **4.** (a) What is meant by Eulerian and Hamiltonian circuits? Draw a graph:
 - (i) That has both an Euler circuit and a Hamiltonian circuit.
 - (ii) That has neither an Euler circuit nor a Hamiltonian circuit.

- (b) Show that if in a graph G ther exist and only one path between every pair of vertices, then G is a tree.
- 5. (a) From the following formulae find out tautology, contingency and contradiction:
 - (i) $\neg (A \rightarrow B) \lor (\neg A \lor (A \land B))$
 - $(ii) \quad (H \mathop{\rightarrow} (I \mathop{\wedge} J)) \mathop{\rightarrow} \neg (H \mathop{\rightarrow} I)$
 - $(iii) \quad (P \mathop{\longleftrightarrow} Q) \cong (P \land Q) \lor (\neg P \land Q)$
 - (b) Prove that the units of a ring R form a group under multiplication.
- **6.** Explain the following:
 - (a) Monoid
 - (b) Cosets
 - (c) Cyclic Group
 - (d) Automorphism in Groups
 - (e) Semigroups.

- 7. (a) Solve the recurrence relation $a_r 7a_{r-1} + 10a_{r+2} = 0$ with the initial conditions $a_0 = 3$ and $a_1 = 3$.
 - (b) Explain Isomorphism and Homomorphism with suitable example.
- **8.** Write notes on the following:
 - (a) Permutations and Combination
 - (b) Homogeneous solution
 - (c) Particular solutions.