(b) Evaluate :

$$
\oint_{\mathrm{C}} \frac{2 z-1}{z(z+1)(z-3)} d z
$$

C : $|z-0|=2$, using Cauchy Residue theorem.

10

Part C

6. (a) A can hit a target 4 times in 5 shots; B 3 times 4 shots; C twice in 3 shots. They fire a valley. What is the probability that at least two shots hit ?

10
(b) Out of 800 families with 4 children each, how many families would be expected to have (i) at least one boy (ii) at most two girls.

10
7. (a) The 9 items of a sample have the following values
45, 47, 50, 52, 48, 47, 49, 53, 51.
Does the mean of these values differ significantly from the assumed mean 47.5 ?

10
\qquad

302

B. Tech. EXAMINATION, Dec. 2018
(Third Semester)
(Old Scheme) (Re-appear Only)
(CSE, EE, ECE, ME, CHE, CE, BME, IC,
EEE, AEI)
MATH201

MATHEMATICS-III

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Part. All questions carry equal marks.

Part A

1. (a) Find a Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$. Hence show that:

10

$$
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots . .=\frac{\pi^{2}}{12}
$$

(b) Find the half-range cosine series for the function $f(x)=x^{2}$ in the range $0 \leq x \leq \pi$.

10
2. (a) Express $f(x)=\left\{\begin{array}{ll}1, & 0 \leq x \leq \pi \\ 0, & x>\pi\end{array}\right.$ as a

Fourier sine integral.
10
(b) Find the Fourier transform of :

$$
f(x)= \begin{cases}1, & |x|<a \\ 0, & |x|>a\end{cases}
$$

Hence deduce that :
10

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

M-302

Part B

3. (a) If z is a complex variable, then prove that :

$$
\tan 2 z=\frac{2 \tan z}{1-\tan ^{2} z}
$$

(b) Prove that $\lim _{z \rightarrow 0} \frac{\bar{z}}{z}$ does not exist. $\mathbf{1 0}$
4. (a) Show that the function $f(z)=\sqrt{|x y|}$ is not analytical at the origin, even though C.R. equations are satisfied at origin. 10
(b) Determine the analytical function whose real part is :

$$
e^{-x}(x \sin y-y \cos y)
$$

5. (a) Find the series expansion of :

$$
f(z)=\frac{z^{2}-1}{z^{2}+5 z+6}
$$

about $z=0$ in the region $2<|z|<3.10$
P.T.O.
(b) A die is thrown 270 times and the results of these throws are given below :

No. appeared on the die	1	2	3	4	5	6
Frequency	40	32	29	59	57	59

Test whether the die is biased or not ? $\mathbf{1 0}$
8. Solve the linear programming problem :

Maximize $Z=60 x+40 y$
Subject to constraints :

$$
\begin{aligned}
x+2 y & \leq 12 \\
2 x+y & \leq 12 \\
4 x+5 y & \geq 20 \\
x, y & \geq 0
\end{aligned}
$$

by using :
(i) Graphically method
(ii) Simplex method.
(b) A die is thrown 270 times and the results of these throws are given below :

No. appeared on the die	1	2	3	4	5	6
Frequency	40	32	29	59	57	59

Test whether the die is biased or not ?
10
8. Solve the linear programming problem :

Maximize $Z=60 x+40 y$
Subject to constraints :

$$
\begin{aligned}
x+2 y & \leq 12 \\
2 x+y & \leq 12 \\
4 x+5 y & \geq 20 \\
x, y & \geq 0
\end{aligned}
$$

by using :
(i) Graphically method
(ii) Simplex method.

