- 8. (a) Explain the code-generation algorithm in detail. 10
 - (b) Construct the dag for the following basic block: 10
 - d: = b*c
 - e: = a+b
 - b := b*c
 - a: = e-d

No. of Printed Pages: 04

Roll No.

G-223

B. Tech. EXAMINATION, Dec. 2017

(Seventh Semester)

(Old Scheme) (Re-appear Only)

(IT)

IT-405

COMPILER DESIGN

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-19/1) M-G-223

P.T.O.

M-G-223 4 60

Unit I

- 1. (a) What are the various phases of the compiler?
 - (b) Explain various loader and linker schemes. 10
- 2. (a) What is lexical analyzer? How is it implemented?
 - (b) What is operator precedent grammar?

 Define its rule.

 10

Consider the grammar:

 $E \rightarrow E+E|E-E|E*E|E/E|E^E|(E)-id$ produce the operator precedence relations for the above grammar and then parse the input id * (id ^ id) – id / id from the operator-precedence relations.

Unit II

3. Define various LR Parser. Constuct a LALR paraser for grammar and parse the input (a+b)*c:

20

E->E+T/T

T->T*F/F

F->(E)/id

M-G-223 2

4. Explain predictive parser. Construct the predictive parser table for the following grammar:

S->iCtSS'/a

 $S' - > eS/\epsilon$

C->b

Unit III

- Explain the various data structures used for implementing the symbol table and compare them.
- 6. (a) Explain simple stack allocation scheme.

 10
 - (b) Explain error detection and error recovery. 10

Unit IV

- 7. (a) Explain global data flow analysis. 10
 - (b) Explain DAG representation of basic blocks. 10

(2-19/2) M-G-223 3 P.T.O.