$\qquad$

## G-227

B. Tech. EXAMINATION, Dec. 2017
(Seventh Semester)
(Old Scheme) (Re-appear Only)

IT-413
NUMERICAL METHODS

Time : 3 Hours]
[Maximum Marks : 100
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Section. Answer to the point.

## Section A

1. Explain the representation of signed floating point numbers.
2. Calculate $110000001110 \ldots 0$ plus 11000 $001000110 \ldots 0$ both are single-precision IEEE 754 representation.
3. Use Bisection Method to find the only real root of the equation $x^{3}+x-1=0$ correct to 6 decimal places.
4. Set up Newton-Raphson iterative formula for the equation :

$$
x \log _{10} x-1.2=0
$$

## Section B

5. Obtain Newton's divided difference interpolating polynomial satisfying the following values : 20 $\begin{array}{llllllll}x & : & 1 & 3 & 4 & 5 & 7 & 10\end{array}$ $f(x): \begin{array}{lllllll} & 3 & 31 & 69 & 131 & 351 & 1011\end{array}$ and find $f(4.5), f(8)$ and the second derivative of $f(x)$ at $x=3.2$.
6. Using Trapezoidal rule solve the integral, $\int_{0}^{1} \frac{1}{x^{2}+6 x+10} d x$ with four subintervals. $\mathbf{2 0}$
7. Using Taylor series, solve $y^{\prime}=x-y^{2}$, $y(0)=1$. Also find $y(0.1)$ correct to four decimal places.
8. Given $f(2)=9$ and $f(6)=17$. Find an approximate value for $f(5)$ by the method of Lagrange's interpolation.
