No. of Printed Pages: 03 Roll No.

G-227

B. Tech. EXAMINATION, May 2017

(Seventh Semester)

(Old Scheme) (Re-appear Only)

(IT)

IT-413

NUMERICAL METHODS

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section.

Answer to the point.

(2-46/13) M-G-227

P.T.O.

Section A

- Explain the floating point representation of numbers.
- Calculate 0 1000 0001 110...0 plus 0 1000 0010 00110 ... 0 both are single-precision IEEE 754 representation.
 20
- 3. Use Bisection method to find the only real root of the equation $x^3 x 1 = 0$ correct to 9 decimal places. 20
- 4. The equation that gives the depth x in meters to which the ball is submerged under water is given by : 20

$$x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$

Use the Newton-Raphson method of finding roots of equations to find :

(a) the depth x to which the ball is submerged under water. Conduct three iteractions to estimate the root of the above equation.

- (b) the absolute relative approximate error at the end of each iteraction.
- (c) the number of significant digits at least correct at the end of each iteraction.

Section B

- 5. Obtain Newton's divided difference interpolating polynomial satisfied by (-4, 1245), (-1, 33), (0, 5), (2, 9) and (5, 1335). 20
- 6. Compute the integral $I = \sqrt{\frac{2}{\pi}} \int_0^1 e^{-x^2/2} dx$ using Simpson's 1/3 rule, taking h = 0.125. 20
- 7. Using Taylor series, solve:

$$5xy' + y^2 - 2 = 0$$
, $y(4) = 1$
Also, find $y(4.1)$.

8. Find Lagrange's interpolation polynomial fitting the points f(1) = -3, f(3) = 0, f(4) = 30, f(6) = 132. Hence find f(5).

M-G-227 2

(2-46/14) M-G-227

3

70