	(ii)	Diagram (rotor) efficiency.	
	(iii)	Axial force on the wheel.	
	(iv)	Energy converted to heat by blade friction	
		per second. 20	
7.	(a)	What is difference between jet condenser and surface condenser explain with neat sketch? 10	
	(b)	What is air leakage in the condenser, its disadvantages and remedies to prevent air leakage in the condenser? 10	
8.	(a)	A multistage air-compressor is to be designed to elevate the pressure 1 bar to 125 bar such that stage pressure ratio does not exceed 4. Determine: (i) No. of stages (ii) Exact stage pressure ratio (iii) Intermediate pressure	
	(b)	What is need of perfect inter cooling and its utility in the multistage compression? Justify your compressor. 4	
	(c)	Why the compressor under isothermal process is desirable and need for obtaining higher isothermal efficiencing? 4	
M-4	135	4 180	

No. of Printed Pages: 4 Roll No.

435

B. Tech. EXAMINATION, May 2019

(Fourth Semester)

(Old Scheme) (Re-appear Only)

ME

ME210

ENERGY CONVERSION

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt any *Five* questions. All questions carry equal marks. Steam tables are allowed. Scientific calculators are also allowed.

(4-17/8) M-435 P.T.O.

- Explain the classification of solid, liquid and gases fuel indicating the characteristics of such fuel.
- Explain with neat sketch the principle of working of Benson High Pressure Boilers. Explain the advantage and limitation of this boilers.
- What is difference between Carnot and Rankin cycles? Explain with drawing PV and TS diagram of each cycle. Determine the thermal efficiencies of both cycles.
- **4.** (a) Prove that under critical pressure ratio, the velocity of a compressible fluid at the exit of a convergent nozzle is given by :

$$C_2 = \sqrt{\frac{2}{r+1}} a_1$$

where a_1 is the sonic velocity Corresponding to the initial conditions. Assume critical pressure Ratio =

$$\left(\frac{2}{r+1}\right)^{\frac{r}{r+1}}$$
 where r is the adiabatic index.

2

M-435

- (b) Explain the nozzle efficiency under saturated steam and superheated steam by drawing neat sketch and the factors on which nozzle efficiening depends. 10
- **5.** (a) Explain the difference between impulse steam turbine and reaction steam turbine.

10

- (b) Explain pressure compounding and velocity compounding of impulse steam turbine by drawing the neat sketch.
- 6. The velocity of steam exiting the nozzle of impulse stage of turbine is 400 m/sec. The blades operates under maximum efficiencing. The nozzle angle α = 20°. Considering equiangular blades i.e. inlet blade angle and outlet blade angle are equal i.e. Q = φ. Neglecting blade friction i.e. K = 1, Mass flow rate is 0.6 kg/sec. Calculate :
 - (i) Diagram power i.e. power generated by rotor blades.

(4-17/9) M-435

3

P.T.O.