No. of Printed Pages: 04 Roll No.

E36

B. Tech. EXAMINATION, 2020

(Fifth Semester)

(B. Scheme) (Re-appear Only)

(ME)

ME311B

APPLIED NUMERICAL TECHNIQUES AND COMPUTING

Time : 2½ *Hours*] [*Maximum Marks* : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Four* questions in all. All questions carry equal marks.

1

(3)M-E36

- 1. (a) Find the truncation error for e^x at x = 1/5 if three first terms are retained in expansion.
 - (b) Round off the number 865250 and 37.46235 to four significant figures and compute absolute, relative and percentage error in each case.
- 2. (a) Find the root of $x^2 2x + 5 = 0$ using Newton-Raphson Method.
 - (b) Compute the real root of equation $xe^x = 2$ correct to four decimal places using Regula-Falsi Method.
- 3. Solve the equation by Guess-Seidel method:

$$10x + 2y + z = 9$$
$$2x + 20y - 2z = -44$$
$$-2x + 3y + 10z = 22$$

(3)M-E36

4. Fit the parabola $y = a + bx + cx^2$ to the following data :

$$x : 1 2 3 4$$

 $y : 2 6 7 8$

5. Use the power method to find the largest Eigen Value and the associated Eigen Vector of the matrix:

$$\begin{bmatrix} 2 & -1 & -2 \\ -1 & 6 & 8 \\ -2 & 8 & 30 \end{bmatrix}$$

You can start with $[0 \ 0 \ 1]^T$ and carry out five iteration.

6. Use the Lagrange's formula to find the form of f(x), given that :

7. From the following table, find the value of

$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = 2.03$:

X	\mathcal{Y}
1.96	0.7825
1.98	0.7739
2.00	0.7651
2.02	0.7563
2.04	0.7473

8. Use Runge-Kutta method to find y when x = 1.2 in steps of 0.1 given that $\frac{dy}{dx} = x^2 + y^2$ and y(1) = 1.5.