Find:

(i) Finite element model with two elements

- (ii) Global stiffness matrix
- (iii) Global load vector
- (iv) Displacement at nodel points
- (v) Stresses in each element
- (vi) Reaction at the support.
- **8.** (a) Discuss the different steps used in finite elements analysis (FEA) in detail. Enlist some suitable applications of FEA in engineering.
 - (b) Explain 2-D and 3-D elements used in FEA. 7+8

No. of Printed Pages: 04

Roll No.

H-61

B. Tech. EXAMINATION, Dec. 2017

(Eighth Semester)

(B. Scheme) (Re-appear Only)

(ME)

ME-402-B

COMPUTER AIDED DESIGN

Time: 3 Hours]

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

M-H-61 4 420

(2-26/5) M-H-61

P.T.O.

Unit I

- **1.** (a) Define CAD CAM. Give a brief description of their applications in industries.
 - (b) Define Explicit, Implicit and parametric representation and list out their advantages.7+8
- **2.** Explain the following types of transformation with examples :
 - (i) Translation
 - (ii) Scaling
 - (iii) Rotation.

15

Unit II

- What is a Bezier curve? Discuss its importance properties.
- Explain various types of surface entities. Derive the parametric equations of the four analytical surface models.

2

M-H-61

Unit III

- 5. What is constructive solid geometry (CSG)?
 What is the role of primitives and boolean operations in CSG? Explain with suitable examples.

 15
- 6. What do you understand by boundary representation (B-Rep) technique of solid modeling? Explain briefly the data structure of B-Rep solid model.

 15

Unit IV

7. A thin plate as shown in fig. has a uniform thickness of 20 mm and a modulus of elasticity is 200 × 10³ N/mm² and density of 7800 kg/m³. In addition to its self weight the plate is subjected to a point load P of 500 N which is applied as shown in figure:

P.T.O.