No. of Printed Pages : 02	Roll No
10. of fillited fages . oz	11011 1 10

18A5

B. Tech. EXAMINATION, 2021

(First Semester)

(C Scheme) (Main & Re-appear)

(ME, AER, AE & ECE)

PHY101C

Introduction to Electromagnetic Theory

Time: 2½ Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Four* questions in all. All questions carry equal marks. Draw neat diagram wherever applicable.

- 1. (a) Drive expression for energy of a continuous charge distribution in terms of electric field.
 - (b) Discuss relation between electric polarization vector and electric field.
 - (c) Drive electric potential due to a dipole.
- **2.** (a) Drive expression for boundary conditions in electrostatics. Where these are used ?
 - (b) Differentiate between divergence and curl of electrostatic field vector.
 - (c) Drive Poisson's equations for electrostatic potential.
- 3. (a) What you understand by magnetization and associated bound currents?
 - (b) Drive boundary conditions for B and H.
 - (c) Define magnetic susceptibility and permeability.

(2)(A21)M-18A5 1 P.T.O.

- **4.** (a) Define Bio-Savart Law. State the terms used.
 - (b) What is vector potential? Calculate vector potential due a given magnetic field using Stoke's theorem.
 - (c) Differentiate between ferromagnetic, paramagnetic and diamagnetic materials on the basis of magnetic moment and domain alignment.
- 5. (a) Drive expression for energy stored in magnetic field.
 - (b) State continuity equation for current densities. Drive modified equation for the curl of magnetic field to satisfy continuity equation.
- 6. (a) Define Faraday's law and express Faraday's law in differential form.
 - (b) Drive expression for flow of energy in electromagnetic field. Define Poynting vector and its units.
- 7. (a) Find expression for energy and momentum carried out by electromagnetic waves in vacuum.
 - (b) Prove the transverse nature of electromagnetic waves in vacuum.
 - (c) State basic principle of transmission lines. Draw equivalent circuit representation.
- **8.** (a) Drive expression for reflection and transmission coefficients for normal incidence of electromagnetic waves at non-conducting medium.
 - (b) Explain wave characteristics on finite transmission lines.
 - (c) What are primary constants in transmission lines?
- 9. (a) What are bound charges? How they are different from free charges?
 - (b) What is auxiliary magnetic field? Define its units.
 - (c) Define the terms magnetic flux and motional EMF.
 - (d) How electromagnetic waves polarize the materials?
 - (e) Define resultant pressure of electromagnetic waves.