(b) Prove that any open interval (a, b) is equivalent to any other open interval (c, d).
7. (a) Explain with one example of each of the following functions :
(i) Hash function
(ii) Floor function
(iii) Characteristic function.
(b) Find the number of distinguishable permutations that can be formed from a collection of n objects in which the first object appears k_{1} times, the second appears k_{2} times and so on. Hence find the number of distinguishable permutations of the letters in MATHEMATICS.

Unit IV

8. (a) Define a generating function. Find the generating function of the sequence is $a_{n}=n+1$.
\qquad

AA-344

B. Sc. (Hons.) EXAMINATION, Dec. 2017
(First Semester)
(Dual Degree) (Main \& Re-appear)
MATHEMATICS
MAT-217-H
Discrete Mathematics-I

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.
(3-33/6) M-AA-344
P.T.O.

1. (a) Let $\mathrm{A}=\{a, b, c, d\}$. Write the members of $\mathrm{P}(\mathrm{A})$. Verify the result by 'the result of $|\mathrm{A}|=n$, then $|\mathrm{P}(\mathrm{A})|=2^{n}$.
(b) Express union, intersection, difference and complement of sets by Venn diagrams.
(c) Draw the truth table to prove that:

$$
p \rightarrow q \equiv-p \vee q
$$

(d) Show that the number of r-combinations out of n elements with repetition allowed is $\left(\frac{n+r-1}{r}\right)$.
(e) Find the total solution of the recurrence relation $a_{n}-4 a_{n-1}+5 a_{n-2}=2$.

Unit I

2. (a) Verify the relation $\mathrm{A} \Delta \mathrm{B}=(\mathrm{A} \cup \mathrm{B})$ $-(A \cap B)=(A-B) \cup(B-A)$ for the sets $A=\{1,2,3\}, B=\{2,3,4,5\}$.
(b) Prove that there is no largest cardinal number.
3. (a) If R is a partial order on A, then R^{-1} is also a partial order.
(b) How many people among $4,00,000$ people are born at the same time ?

Unit II

4. (a) Explain basic logical operations with truth tables and one example of each.
(b) State and prove Identify law of logics.
5. (a) Explain Quantifiers.
(b) Use methematical induction to show that:

$$
n!\geq 2^{n-1}, n=1,2,3, \ldots \ldots \ldots
$$

Unit III

6. (a) How many five-persons committee can be constituted from a group of six men and five women consisting of :
(i) at least one man
(ii) at most one man.
P.T.O.
(b) Find the particular solution of the difference equation :

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=3^{n}+n
$$

9. (a) Find the particular solution of the difference equation :

$$
a_{n}+5 a_{n-1}+6 a_{n-2}=3 n^{2}-2 n+1
$$

(b) Solve the recurrence relation by generating function :

$$
a_{n}-4 a_{n-1}=6.4^{n}, a_{0}=1
$$

(b) Find the particular solution of the difference equation :

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=3^{n}+n
$$

9. (a) Find the particular solution of the difference equation :

$$
a_{n}+5 a_{n-1}+6 a_{n-2}=3 n^{2}-2 n+1
$$

(b) Solve the recurrence relation by generating function :

$$
a_{n}-4 a_{n-1}=6.4^{n}, a_{0}=1
$$

