(b) Find the equation of the conic passing through five points $(2,1),(1,0),(3,-1)$, $(-1,0)$ and $(3,-2)$.
$71 / 2$

Unit II

4. (a) Find the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$; $2 x+3 y+4 z-8=0$ as a great circle.
(b) Find the equation of the right circular cylinder of radius 2 and axis as the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}$. $71 / 2$
5. (a) The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the co-ordinate axes in A, B, C. Prove that the cone generated by the lines drawn from 0 , to meet the circle ABC is : $71 / 2$ $y z\left(\frac{b}{c}+\frac{c}{b}\right)+x z\left(\frac{c}{a}+\frac{a}{c}\right)+x y\left(\frac{a}{b}+\frac{b}{a}\right)=0$

AA-343

B. Sc. (Hons.) EXAMINATION, Dec. 2017
(First Semester)
(Dual Degree) (Main \& Re-appear)
MATHEMATICS
MAT-215-H
Solid Geometry

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. Q. No. $\mathbf{1}$ is compulsory. All questions carry equal marks.
P.T.O.

1. Attempt any ten parts :

1 $1 / 2$ each
(a) Define eccentricity and latus rectum of a conic.
(b) Define pole and polar w.r.t. a conic.
(c) Find the asymptotes of the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(d) Write the equation of the choral of contact of tangents drawn from the point $\left(x_{1}, y_{1}\right)$ w.r.t. the conic $a x^{2}+2 h x y+b y^{2}$ $+2 g x+2 f y+\mathrm{C}=0$.
(e) When the equation $a x^{2}+2 h x y+b y^{2}+$ $2 g x+2 f y+\mathrm{C}=0$ will represent a real circle.
(f) Define a cone and a right circular cone.
(g) Define a generator and guiding curve of a cylinder.
(h) Write the equations of 3 types of conicoids and name them.
(i) Define a tangent plane and normal to a conicoid.
(j) Write the equation of a conicoid. Find its sections by co-ordinate planes and name them.
(k) Define director sphere of a conicoid.
(1) What are ruled surfaces ?

Unit I

2. (a) Find the nature of the curve, centre and the equation of the conic referred to the centre as origin of $13 x^{2}-18 x y+37 y^{2}+$ $2 x+14 y-2=0$. 5
(b) Trace the conic $9 x^{2}+24 x y+16 y^{2}-2 x$ $+14 y+1=0$.
3. (a) Prove that the difference of the squares of the perpendicular drawn from the centre on any two parallel tangents to two given confocal conics is constant.
(b) Find the equation of the right circular cone whose vertex is at the origin, axis the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and which has a vertical angle 60°.

Unit III

6. (a) Find the equations of the tangent planes to the surface $x^{2}-2 y^{2}+3 z^{2}=2$ which are parallel to the plane $x-2 y+3 z=0$.
(b) The normal at any point P of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meets the principal planes is G_{1}, G_{2}, G_{3}. Show that $\mathrm{PG}_{1}: \mathrm{PG}_{2}: \mathrm{PG}_{3}=a^{2}: b^{2}: c^{2} . \quad 71 / 2$
7. (a) Find the equation of the enveloping cylinder of the conicoid $a x^{2}+b y^{2}+c z^{2}=1$, whose generators are parallel to $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$.
(b) Find the centre of the conic given by the equation :
$2 x-2 y-5 z+5=0,3 x^{2}+2 y^{2}-15 z^{2}=4$.
$71 / 2$

Unit IV

8. (a) Show that the plane $2 x-4 y-z+3=0$ touches the paraboloid $x^{2}-2 y^{2}=3 z$. Also find the point of contact. $71 / 2$
(b) Find the condition that the line $l x+m y+n z+p=0, l^{\prime} x+m^{\prime} y+n^{\prime} z$ $+p^{\prime}=0$ may be a generator of the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. $71 / 2$

Or
Prove that two conicoids confocal with a conicoid, touch a given line.

