4. (a) A weight can be just supported on a rough inclined plane by a force P acting along the plane or by a force Q acting horizontally; show that the weight is $\frac{\mathrm{PQ}}{\sqrt{\mathrm{Q}^{2} \sec ^{2} \phi-\mathrm{P}^{2}}}$, where $\phi$ is the angle of friction.
(b) Find the centre of gravity of the area of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ lying in the first quadrant.

## Unit III

5. (a) A rectangular lamina ABCD rests with the sides $\mathrm{AB}, \mathrm{AD}$ on two smooth pegs in a horizontal line. Prove that if the distance between the pegs is half a diagonal of the rectangle, then $\mathrm{AB}, \mathrm{AD}$ bisect the angle between AC and the horizon.
(b) Prove that any system of forces acting on a rigid body can be reduced in general to a force acting at an arbitrary chosen point of the body and a couple.

Roll No. $\qquad$

## CC-343

Dual Degree/B.Sc. (Hons.)
EXAMINATION, Dec. 2018
(Third Semester)
(Main \& Re-appear)
MATHEMATICS
MAT315H
Statics

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
(2-20/4) M-CC-343
P.T.O.

## Unit I

1. (a) The resultant of two forces P and Q trisects the angle between them. Show that if $\mathrm{P}>\mathrm{Q}$, then the angle between them is $3 \cos ^{-1}\left(\frac{\mathrm{P}}{2 \mathrm{Q}}\right)$ and the resultant is $\frac{\mathrm{P}^{2}-\mathrm{Q}^{2}}{\mathrm{Q}}$.
(b) P and Q are two like parallel forces. If P moved parallel to itself through a distance $x$, show that their resultant moves though the distance $\frac{\mathrm{P}}{\mathrm{P}+\mathrm{Q}} x$.
2. (a) At what point of a tree must one end of a rope of given lenght $l$ be attached so that a man pulling at the other end with a given force may have the greatest tendency to pull it over.
(b) Forces of magnitude $1,2,3,4,2 \sqrt{2}$ act respectively along the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, DA and diagonal AC of the square ABCD of side ' $a$ '. Show that their resultant is a couple and find its moment.

## Unit II

3. (a) A heavy uniform rod is in equilibrium with one end resting against a smooth vertical wall and the other against a smooth plane inclined to the wall at an angle $\theta$. Prove that if $\alpha$ be the inclination of the $\operatorname{rod}$ to the horizontal, then $2 \tan \alpha=\tan \theta$.
(b) Two equal heavy rods of weight W and length 2a are freely hinged together and placed symmetrically over a smooth fixed sphere of radius $r$. Show that the inclination of each rod to the horizontal is given by :

$$
r\left(\tan ^{3} \theta+\tan \theta\right)=a
$$

(2-20/5) M-CC-343
3
P.T.O.
6. A force P acts along the axis of $x$ and another force $n \mathrm{P}$ along a generator of the cylinder $x^{2}+y^{2}=a^{2}$. Show that the central axis lies on the cylinder :

$$
n^{2}(n x-z)^{2}+\left(1+n^{2}\right)^{2} y^{2}=n^{4} a^{2}
$$

## Unit IV

7. Find the resultant wrench of two given wenches.
8. (a) Find the null point of the plane $x+y+$ $z=0$ for the force system (X,Y, Z; $\mathrm{L}, \mathrm{M}, \mathrm{N})$.
(b) A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its length resting on a smooth peg. Find the position of equilibrium and show that it is unstable.
9. A force P acts along the axis of $x$ and another force $n \mathrm{P}$ along a generator of the cylinder $x^{2}+y^{2}=a^{2}$. Show that the central axis lies on the cylinder :

$$
n^{2}(n x-z)^{2}+\left(1+n^{2}\right)^{2} y^{2}=n^{4} a^{2}
$$

## Unit IV

7. Find the resultant wrench of two given wenches.
8. (a) Find the null point of the plane $x+y+$ $z=0$ for the force system (X,Y, Z; $\mathrm{L}, \mathrm{M}, \mathrm{N})$.
(b) A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its length resting on a smooth peg. Find the position of equilibrium and show that it is unstable.
