- 4. (a) A weight can be just supported on a rough inclined plane by a force P acting along the plane or by a force Q acting horizontally; show that the weight is
 - $\frac{PQ}{\sqrt{Q^2\,sec^2\,\varphi-P^2}}$, where φ is the angle of friction.
 - (b) Find the centre of gravity of the area of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ lying in the first quadrant.

Unit III

- 5. (a) A rectangular lamina ABCD rests with the sides AB, AD on two smooth pegs in a horizontal line. Prove that if the distance between the pegs is half a diagonal of the rectangle, then AB, AD bisect the angle between AC and the horizon.
 - (b) Prove that any system of forces acting on a rigid body can be reduced in general to a force acting at an arbitrary chosen point of the body and a couple.

4

No. of Printed Pages: 05 Roll No.

CC-343

Dual Degree/B.Sc. (Hons.) EXAMINATION, Dec. 2018

(Third Semester)

(Main & Re-appear)

MATHEMATICS

MAT315H

Statics

Time: 3 Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-20/4) M-CC-343

P.T.O.

Unit I

- 1. (a) The resultant of two forces P and Q trisects the angle between them. Show that if P > Q, then the angle between them is $3\cos^{-1}\left(\frac{P}{2Q}\right)$ and the resultant is $\frac{P^2 Q^2}{Q}$.
 - (b) P and Q are two like parallel forces. If P moved parallel to itself through a distance x, show that their resultant moves though the distance $\frac{P}{P+Q}x$.
- 2. (a) At what point of a tree must one end of a rope of given lenght *l* be attached so that a man pulling at the other end with a given force may have the greatest tendency to pull it over.

2

(b) Forces of magnitude 1, 2, 3, 4, $2\sqrt{2}$ act respectively along the sides AB, BC, CD, DA and diagonal AC of the square ABCD of side 'a'. Show that their resultant is a couple and find its moment.

Unit II

- 3. (a) A heavy uniform rod is in equilibrium with one end resting against a smooth vertical wall and the other against a smooth plane inclined to the wall at an angle θ . Prove that if α be the inclination of the rod to the horizontal, then $2\tan \alpha = \tan \theta$.
 - (b) Two equal heavy rods of weight W and length 2a are freely hinged together and placed symmetrically over a smooth fixed sphere of radius *r*. Show that the inclination of each rod to the horizontal is given by:

$$r(\tan^3\theta + \tan\theta) = a$$

(2-20/5) M-CC-343

3

P.T.O.

M-CC-343

6. A force P acts along the axis of x and another force nP along a generator of the cylinder $x^2 + y^2 = a^2$. Show that the central axis lies on the cylinder:

$$n^{2}(nx-z)^{2} + (1+n^{2})^{2}y^{2} = n^{4}a^{2}$$

Unit IV

- 7. Find the resultant wrench of two given wenches.
- 8. (a) Find the null point of the plane x + y + z = 0 for the force system (X, Y, Z; L, M, N).
 - (b) A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its length resting on a smooth peg. Find the position of equilibrium and show that it is unstable.

6. A force P acts along the axis of x and another force nP along a generator of the cylinder $x^2 + y^2 = a^2$. Show that the central axis lies on the cylinder:

$$n^{2}(nx-z)^{2} + (1+n^{2})^{2}y^{2} = n^{4}a^{2}$$

Unit IV

- 7. Find the resultant wrench of two given wenches.
- 8. (a) Find the null point of the plane x + y + z = 0 for the force system (X, Y, Z; L, M, N).
 - (b) A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its length resting on a smooth peg. Find the position of equilibrium and show that it is unstable.