- **6.** (a) Prove that R is complete.
 - (b) State and prove cantor intersection theorem.

Unit IV

- 7. (a) Prove that the image of a Cauchy sequence under a uniformaly continuous mapping is itself a cauchy sequence.
 - (b) Prove that continuous image of a compact set is compact.
- **8.** (a) Show that R is connected.
 - (b) Prove that compact sets have Bolzano-Weierstrass property.

No. of Printed Pages: 04 Roll No.

EE-341

Dual Degree/B.Sc. (Hons.) EXAMINATION, Dec. 2018

(Fifth Semester)

(Main & Re-appear)

MATHEMATICS

MAT411H

Real Analysis

Time: 3 Hours [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-23/19)M-EE-341 P.T.O.

4

M-EE-341

100

Unit I

- 1. (a) State and prove the necessary and sufficient conditions for Riemann integrability.
 - (b) If f is monotonic on [a, b], then $f \in R[a, b]$.
- 2. (a) If $f \in R[a, b]$, then $|f| \in R[a, b]$ and $\begin{vmatrix} b \\ a \end{vmatrix} \le \int_a^b |f|$. Give an example of a bounded function f such that $|f| \in R$ but f is not.
 - (b) Taking f(x) = x, $g(x) = e^x$, verify the second mean value theorem in [-1, 1].

Unit II

3. (a) State comparison test for convergence of an integral and hence test the convergence of the integral $\int_{0}^{\infty} \frac{\cos x}{1+x^2} dx$.

M-EE-341 2

(b) State Dirichlet's test for convergence of an integral and hence test the convegence of the integral :

$$\int_{a}^{\infty} \frac{1}{\sqrt{x}} \sin x dx, \ a > 0.$$

4. (a) Evaluate the integral:

$$\int_{0}^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx.$$

(b) Evaluate:

$$\int_{0}^{\infty} e^{-x^2} dx$$

Unit III

- 5. (a) Define a metric space and show that R^n is a metric space.
 - (b) Prove that in a metric space, every *nbd* is an open set.

(3-23/20)M-EE-341

3

P.T.O.