(b) Prove that every closed subset of a countably compact topological space is countable compact.

Unit IV

- 7. (a) Prove that every second countable space is first countable. 8
 - (b) Prove that:
 - (i) Every discrete topological space is first countable
 - (ii) Every usual topological space onR, set of reals, is first countable.7
- 8. (a) Prove that every T_2 -space is T_1 -space but converse may not be true. 8
 - (b) Prove that topological property holds in T_1 -spaces. 7

No. of Printed Pages: 04 Roll No.

FF-344

Dual Degree B.Sc. (Hons.) EXAMINATION, May 2018

(Sixth Semester)

(Main & Re-appear)

MATHEMATICS

MAT418H

Elementary Topology

Time: 3 Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

M-FF-344 4 100 (2-08/19) M-FF-344 P.T.O.

Unit I

1. Define the following terms :

Well ordering theorem. I continum hypothesis, indiscrete and discrete topologies, lower and upper limit topology, left hand and right hand topology, cofinite and co-countable topology, A inclusion and p-exclusion topology, Adherent point, Base and subbase for a topology.

- 2. (a) Let (X, ρ) be a topological space, then a subfamily β of ρ is a base for ρ iff every s-open set can be expressed as the union of member of β.
 - (b) Let (X, ρ) be a topological spaces and A be a subset of X. Then prove that $\overline{A} = A \cup D(A)$, D(A) denotes derived set of A.

Unit II

3. Define continuity and homeomorphism on a topological spaces. If f be a one-one mapping

2

(i) f is open and continuous
(ii) f is homeomorphism
(iii) f is closed and continuous.

statements are equivalent:

from a topological space (X, ρ_x) onto a

topological space (Y, ρ_v) . Then fhe following

- 4. (a) Prove that a topological space (X, ρ) is connected iff ϕ , X are the only sets which are both open as well as closed. 10
 - (b) An open set in a usual topological space is connected set prove or disprove. 5

Unit III

- 5. (a) Define compact space. Prove that every finite set in a topological space is compact.8
 - (b) Prove that usual topological space is not compact.7
- 6. (a) Prove that continuous image of a compact space is compact.

3

(2-08/20) M-FF-344

P.T.O.

15

M-FF-344