where $\sigma_{n}(x)=\frac{1}{n} \sum_{k=0}^{n-1} \mathrm{~S}_{k}(x)$ and S_{n} is the nth partial sum of the Fourier series for f. 9
(b) Applying Parseval's identity to the function :

$$
f(t)=t \quad(-\pi \leq t \leq \pi .)
$$

show that :

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots .+\frac{1}{n^{2}}+\ldots \ldots=\frac{\pi^{2}}{6}
$$

Unit III

5. (a) Explain the following terms :
(i) Extended couple plane
(ii) Riemann sphere
(iii) Stereographic projection.
(b) State and prove the necessary and sufficient condition for a function $f(z)$ to be analytic.10
\qquad

FF-341

Dual Degree B.Sc. (Hons.)
 EXAMINATION, May 2018

(Sixth Semester)
(Main \& Re-appear)
(MATHEMATICS)

MAT412H

Real and Complex Analysis

Time : 3 Hours] [Maximum Marks : 75
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.
(2-08/11) M-FF-341
P.T.O.

Unit I

1. (a) Differentiate between a function of complex variable and a function of real variable. Also give suitable examples. 4
(b) Define branch point of a function. Also find the branch points of the function : 5

$$
f(z)=\log \left(z^{2}+z-2\right)
$$

(c) Using the identity $e^{i z}=\cos z+i \sin z$, show that :

$$
\begin{aligned}
e^{i z_{1}} e^{i z_{2}}=\cos & z_{1} \cos z_{2}-\sin z_{1} \sin z_{2} \\
& +i\left(\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}\right)
\end{aligned}
$$

2. (a) Find all roots of the equation $\sin z=\cosh y$ by equating the real parts and then the imaginary parts.
(b) Define the domain of definition for the function :

$$
f(z)=\frac{z}{z+\bar{z}}
$$

(c) Find the polar form of the complex number $-5+5 i$.

M-FF-341

Unit II

3. (a) Define Fourier series for a function $f \in \rho[-\pi, \pi]$. Explain different properties of Fourier coefficients. Also find the Fourier series for the function :

$$
f(x)=\frac{x^{2}}{4}[-\pi \leq x \leq \pi]
$$

(b) Suppose $f \in \rho[-\pi, \pi]$ and

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

show that if f is even, then $b_{1}=b_{2}=$ $=0$ while if f is odd then $a_{0}=a$
$=a_{2}=$ \qquad $=0$.
4. (a) If $f \in \rho[-\pi, \pi]$ and $f \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right),-\pi \leq x \leq \pi$. show that:

$$
\begin{gathered}
\sigma_{n}(x)=\frac{a_{0}}{2}+\sum_{k-1}^{n-1}\left(1-\frac{k}{n}\right)\left(a_{k} \cos k x+b_{k} \sin k x\right) \\
\text { for } n=1,2, \ldots \ldots, ;-\pi \leq x \leq \pi .
\end{gathered}
$$

P.T.O.
8. (a) Prove that at each point z of a domain D where $f(z)$ is analytic and $f^{\prime}(z) \neq 0$, the mapping $w=f(z)$ is conformal. 9
(b) Prove that cross ratio remains invariant under a bilinear transformation. 6
6. (a) Show that :

$$
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=y \frac{\partial^{2}}{\partial z \partial \bar{z}}
$$

where $z=x+i y$.
(b) Show that a harmonic function satisfies the differential equation :

$$
\frac{\partial^{2} u}{\partial z \partial \bar{z}}=0
$$

(c) Show that the function :
$u=\sin x \cdot \cosh y+2 \cos x \cdot \sinh y+x^{2}-y^{2}+4 x y$
is a harmonic function. Also determine the corresponding analytic function $f(z)=u+i v$. 7

Unit IV

7. (a) Show that product of two bilinear transformation is a bilinear transformation. 7
(b) Find the general homographic transformations which leaves the unit circle invariant.
