where $\sigma_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(x)$ and S_n is the *n*th partial sum of the Fourier series for *f*.

(b) Applying Parseval's identity to the function :

$$f(t) = t \ (-\pi \le t \le \pi.)$$

show that:

6

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$$

Unit III

- 5. (a) Explain the following terms:
 - (i) Extended couple plane
 - (ii) Riemann sphere
 - (iii) Stereographic projection. 5
 - (b) State and prove the necessary and sufficient condition for a function f(z) to be analytic.

M-FF-341

4

No. of Printed Pages: 06

Roll No.

FF-341

Dual Degree B.Sc. (Hons.) EXAMINATION, May 2018

(Sixth Semester)

(Main & Re-appear)

(MATHEMATICS)

MAT412H

Real and Complex Analysis

Time: 3 Hours

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit.

(2-08/11) M-FF-341

P.T.O.

Unit I

- (a) Differentiate between a function of complex variable and a function of real variable. Also give suitable examples. 4
 - (b) Define branch point of a function. Also find the branch points of the function: 5

$$f(z) = \log(z^2 + z - 2)$$

(c) Using the identity $e^{iz} = \cos z + i \sin z$, show that :

$$e^{iz_1}e^{iz_2} = \cos z_1 \cos z_2 - \sin z_1 \sin z_2 + i(\sin z_1 \cos z_2 + \cos z_1 \sin z_2)$$

- 2. (a) Find all roots of the equation $\sin z = \cosh y$ by equating the real parts and then the imaginary parts. 6
 - (b) Define the domain of definition for the function:

$$f(z) = \frac{z}{z + \overline{z}}$$

(c) Find the polar form of the complex number -5 + 5i.

M-FF-341

2

Unit II

3. (a) Define Fourier series for a function $f \in \rho[-\pi, \pi]$. Explain different properties of Fourier coefficients. Also find the Fourier series for the function: 10

$$f(x) = \frac{x^2}{4} \quad [-\pi \le x \le \pi]$$

(b) Suppose $f \in \rho[-\pi, \pi]$ and

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right)$$

show that if f is even, then $b_1 = b_2 = \dots = 0$ while if f is odd then $a_0 = a = a_2 = \dots = 0$.

4. (a) If $f \in \rho[-\pi, \pi]$ and

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right), \ -\pi \le x \le \pi.$$

show that:

$$\sigma_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right) (a_k \cos kx + b_k \sin kx)$$

for
$$n = 1, 2, ..., -\pi \le x \le \pi$$
.

(2-08/12) M-FF-341

3

P.T.O.

- 8. (a) Prove that at each point z of a domain D where f(z) is analytic and $f'(z) \neq 0$, the mapping w = f(z) is conformal. 9
 - (b) Prove that cross ratio remains invariant under a bilinear transformation. 6

6. (a) Show that :

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = y \frac{\partial^2}{\partial z \, \partial \overline{z}}$$

5

where z = x + iy.

(b) Show that a harmonic function satisfies the differential equation: 3

$$\frac{\partial^2 u}{\partial z \ \partial \overline{z}} = 0$$

(c) Show that the function:

$$u = \sin x \cdot \cosh y + 2\cos x \cdot \sinh y + x^2 - y^2 + 4xy$$

is a harmonic function. Also determine
the corresponding analytic function
 $f(z) = u + iv$.

Unit IV

- 7. (a) Show that product of two bilinear transformation is a bilinear transformation.
 - (b) Find the general homographic transformations which leaves the unit circle invariant.

(2-08/13) M-FF-341 5 P.T.O.

M-FF-341 6 100