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Before answering the question-paper candidates

should ensure that they have been supplied to correct

and complete question-paper. No complaint, in this

regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at

least one question from each Unit.
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    and Sn is the

nth partial sum of the Fourier series for

f. 9

(b) Applying Parseval's identity to the

function :

( )f t t  (–  t  .)

show that : 6
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Unit III

5. (a) Explain the following terms :

(i) Extended couple plane

(ii) Riemann sphere

(iii) Stereographic projection. 5

(b) State and prove the necessary and

sufficient condition for a function ( )f z

to be analytic. 10
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Unit I

1. (a) Differentiate between a function of

complex variable and a function of real

variable. Also give suitable examples. 4

(b) Define branch point of a function. Also

find the branch points of the function : 5

 2( ) log 2f z z z  

(c) Using the identity cos sinize z i z  ,

show that : 6

1 2
1 2 1 2cos cos sin siniz ize e z z z z 

 1 2 1 2sin cos cos sini z z z z 

2. (a) Find all roots of the equation

sin coshz y  by  equating the real parts

and then the imaginary parts. 6

(b) Define the domain of definition for the

function : 5
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(c) Find the polar form of the complex

number –5 + 5i. 4

Unit II

3. (a) Define Fourier series for a function

 ,f    . Explain different properties

of Fourier coefficients. Also find the

Fourier series for the function : 10
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show that if f is even, then b1 = b2 =

........... = 0 while if f is odd then a0 = a

= a2 = ........... = 0. 5

4. (a) If f  [–, ] and
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show that :
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for n = 1, 2,......,; –  x  .
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6. (a) Show that : 5
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where z = x + iy.

(b) Show that a harmonic function satisfies

the differential equation : 3
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(c) Show that the function :

2 2sin .cosh 2cos .sinh 4u x y x y x y xy    

is a harmonic function. Also determine

the corresponding analytic function

( )f z u iv  . 7

Unit IV

7. (a) Show that product of two bilinear

transformation is a bilinear

transformation. 7

(b) Find the general homographic

transformations which leaves the unit

circle invariant. 8

8. (a) Prove that at each point z of a domain D

where ( )f z  is analytic and ( ) 0f z  ,

the mapping  ( )w f z  is conformal. 9

(b) Prove that cross ratio remains invariant

under a bilinear transformation. 6
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