\qquad

DD-685

M.C.A. EXAMINATION, May 2017

(Fourth Semester)
(B. Scheme) (Main \& Re-appear)
THEORY OF COMPUTATION
MCA-552

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

1. (a) Explain the following terms : production restriction, acceptor, derivation and FSM. Also give example for each.
P.T.O.
(b) Determine the DFA that accepts the language :
(i) $\mathrm{L}\left(\mathrm{aa} *+\mathrm{aba}{ }^{*}+\mathrm{b}^{*}\right)$
(ii) $\mathrm{L}(\mathrm{ab}(\mathrm{a}+\mathrm{ab} *(\mathrm{a}+\mathrm{aa}))$
2. (a) Design NDFA with five states for $\left\{a b a b^{n}\right.$ $: n \geq 0\} \cup\left\{a b a^{n}: n \geq 0\right\}$. 7
(b) Give regular expression for (i) Zero or more (ii) Any string at all, where $\sum\{a, b, c\}$. 8

Unit II

3. (a) State the closure properties of regular languages.

6
(b) What is GNF ? How to convert a given grammar into GNF ?

9
4. Obtain a grammar in CNF equivalent to the grammar G with productions P given :
$\mathrm{S} \rightarrow \mathrm{aAbB}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$

Unit III

5. Design a Turning machine that accepts $\mathrm{L}=$ $\left\{a^{n} b^{n}\right\} \mid n \geq 0$.
6. (a) What is a non-deterministic Turning machine ?

7
(b) What is meant for empty production removal in push down automata ? 8

Unit IV

7. (a) Show that $\{a, b\}^{*}-\left\{a^{n} b^{n^{2}}\right\} \mid n \geq 0$ is not context free.
(b) What is a primitive recursive function and primitive recursion ?
8. (a) What is unrestricted grammar? What are some of its features ?
(b) What are total function and partial function ? Show how a Turing machine may perform recursion?
