6. What are turing machines ? Design a turing machine for the given language :

15
$\mathrm{L}=\left\{w w^{\mathrm{T}} \mid w\right.$ is a string over 0 's and 1 's

Unit IV

7. Explain Chomsky hierarchy of grammars and relation between different grammars ? $\mathbf{1 5}$
8. Write short notes on the following:
(a) Primitive recursive functions
(b) Context sensitive languages. $\quad \mathbf{7 . 5 \times 2}$

No. of Printed Pages: 04
Roll No. \qquad

DD-685

M.C.A. EXAMINATION, May 2018
(Fourth Semester)
(B. Scheme) (Main \& Re-appear)
(MCA)
MCA552
THEORY OF COMPUTATION

Time : 3 Hours] [Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Differentiate between deterministic finite automata and non-deterministic finite automata.

7
(b) Design a finite automata for accepting all string over $\{0,1\}$ having 3 consecutive 0 's at the end of string. $\mathbf{8}$
2. (a) What are regular expressions ? Write a regular expression for a inite automata accepting all strings over $\{a, b\}$ such that all strings have ' $a b$ ' substring. $\mathbf{5}$
(b) Convert the given moore machine to mealy machine :

Input

State	0	1	Output
\rightarrow Q0	Q1	Q2	0
Q1	Q2	Q3	1
Q2	Q2	Q0	1
Q3	Q1	Q2	0

Unit II

3. (a) Prove using pumping lemma that the given language L is not regular. $\mathrm{L}=\left\{a^{n} b^{n} \mid n>=0\right\}$.
(b) What is meant by ambiguous grammar ? Explain with an example.
4. Reduce the given grammar removing useless symbols and unit productions :
$\mathrm{S} \rightarrow \mathrm{AB} / \mathrm{a}$
$\mathrm{A} \rightarrow \mathrm{BC}$
$\mathrm{B} \rightarrow \mathrm{AC}$
$\mathrm{C} \rightarrow \mathrm{D} / \mathrm{a}$
D \rightarrow E/a
$\mathrm{E} \rightarrow \mathrm{b}$

Unit III

5. Design a PDA for the given language : $\mathbf{1 5}$

$$
\left\{a^{n} b^{n} \mid n>=0\right\} .
$$

(2-25/14) M-DD-685 3
P.T.O.

