(b) Obtain a relationship between Riccati equation and linear differential equation of second order. Solve the Riccati equation :

$$
\frac{d y}{d x}=(1-x) y^{2}+(2 x-1) y-x
$$

Unit III

5. (a) State and prove Sturm's fundamental comparison theorem. Also provide a suitable example.
(b) Find the characteristic values and functions for the Sturm-Liouville problem :
$\frac{d^{2} y}{d x^{2}}+\lambda y=0 ; y(0)=0, y(n)-y^{\prime}(n)=0$
6. (a) State and prove Sturm-Liouville theorem concerning the orthogonality of characteristic functions.

No. of Printed Pages: 06
Roll No. \qquad

AA-314

M. Sc. EXAMINATION, May 2018

(First Semester)
(Re-appear Only)
MATHEMATICS
MAT507B
Ordinary Differential Equations-I

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
(2-11/12) M-AA-314
P.T.O.

Unit I

1. (a) Explain the concept of equicontinuous family of functions. State and prove Arzela-Alcoli theorem.
(b) State and prove Cauchy-Euler construction theorem for an approximate solution of an IVP.
2. (a) State Picard-Lindelof theorem. For the initial value problem :

$$
x^{\prime}(t)=x^{2}+t^{2}, x(0)=0
$$

find the largest interval $|t| \leq h$ on which Picard's theorem guarantees the existence and uniqueness of solution.
(b) Obtain Picard's approximations of the differential equation $x^{\prime}(t)=t+x$ with the initial condition (i) $x_{0}(t)=e^{t}$ and (ii) $x_{0}(t)=\cos t$.

Unit II

3. (a) Prove that a Pfaffian differential equation in two variables always possesses an integrating factor. Find out the necessary and sufficient condition for a Pfaffian differential equation in three variables to be integrable.
(b) State and prove comparison theorem for differential inequalities in the strip $a \leq t \leq b$.
4. (a) Let f and g be two solution of :

$$
\frac{d}{d t}\left[\mathrm{P}(t) \frac{d x}{d t}\right]+\mathrm{Q}(t) x=0
$$

such that f and g have a common zero on $a \leq t \leq b$. Then prove that f and g are linearly dependent on $a \leq t \leq b$. Also prove the converse part stating the restriction.
P.T.O.
8. (a) Solve the differential equation :

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{2}
$$

by the method of variation of parameters.
(b) Solve the differential equation :
$x \frac{d}{d x}\left(x \frac{d y}{d x}-y\right)-2 x \frac{d y}{d x}+2 y+x^{2} y=0$
by removing the first derivative.
(b) Use the method of separation of variables to solve the heat equation :

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial x}
$$

where the boundary conditions are :

$$
u(0, t)=0, u(\mathrm{~L}, t)=0, t>0
$$

and the initial condition is :

$$
u(x, 0)=f(x), 0 \leq x \leq \mathrm{L}
$$

where $\mathrm{L}>0$ and f is a specifided function of $x, 0 \leq x \leq \mathrm{L}$.

Unit IV

7. (a) Find complete solution of linear differential equation :

$$
x y^{(1)}-y=(x-1)\left(y^{(2)}-x+1\right)
$$

in terms of known integral.
(b) Describe the method of solution of linear differential equation of second order by changing the independent variable. Hence, solve :

$$
y^{2}+(3 \sin x-\cot x) y^{(1)}+2 y \sin ^{2} x=e^{-\cos x} \sin ^{2} x
$$

(2-11/14) M-AA-314
5
P.T.O.

