5. Use Big-M Method to solve the given LPP :

Maximize $Z=5 x_{1}+3 x_{2}$
Subject to constraints

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \leq 12 \\
2 x_{1}+2 x_{2} & =10 \\
5 x_{1}+2 x_{2} & \geq 10 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Unit III

6. Using Dual Simplex Method solve :

Maximize $\mathrm{Z}=x_{1}+2 x_{2}+3 x_{3}$
Subject to

$$
\begin{aligned}
2 x_{1}-x_{2}+x_{3} & \geq 4 \\
x_{1}+x_{2}+2 x_{3} & \leq 8 \\
x_{2}-x_{3} & \geq 2 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

7. Determine the optimal transportation plan and least transportation cost for the following table :

15

Plant	$\mathbf{W}_{\mathbf{1}}$	$\mathbf{W}_{\mathbf{2}}$	$\mathbf{W}_{\mathbf{3}}$	$\mathbf{W}_{\mathbf{4}}$	Availability
F_{1}	11	20	7	8	50
$\mathrm{~F}_{2}$	21	16	10	12	40
$\mathrm{~F}_{3}$	8	12	18	9	70
Requirement	30	25	35	40	

Roll No. \qquad

18A705

Dual Degree B. Sc. (Hons.)/
 M. Sc. Mathematics
 EXAMINATION, Dec. 2018

(First Semester)
(Main Only)
MATHS
DMT223B
OPERATIONS RESEARCH-I

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : The question paper consists four Units and one compulsory question. The student should attempt a total Five questions, by selecting one question from each Unit and the compulsory question.

Compulsory Question

1. (a) Write the steps of formulation of a linear programming problem.
(b) Explain various terms like basic solution, feasible solution and degeneracy in a linear programming problem.
(c) Write the principle of duality and convert the given LPP into its dual form : 3 Maximize $Z=5 x_{1}+3 x_{2}$

Subject to

$$
\begin{array}{r}
x_{1}+x_{2} \leq 2 \\
5 x_{1}+2 x_{2} \leq 10 \\
3 x_{1}+8 x_{2} \leq 12 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

(d) What do you mean by an assignment problem ? Explain with the help of a suitable examples.
(e) Write the rules of dominance used to reduce the size of the payoff matrix in game theory.

Unit I

2. Define the scope, methodology and applications of operation research.
3. Solve the given LPP by graphically method :

Maximize $Z=20 x_{1}+10 x_{2}$
Subject to constraints

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 40 \\
3 x_{1}+x_{2} & \geq 30 \\
4 x_{1}+3 x_{2} & \geq 60 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Also write the limitations of graphical method.

Unit II

4. Solve the following LPP by simplex method :

Maximize $\mathrm{Z}=x_{1}-3 x_{2}+3 x_{3}$
Subject to

$$
\begin{array}{r}
3 x_{1}-x_{2}+2 x_{3} \leq 7 \\
2 x_{1}+4 x_{2} \geq-12 \\
-4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Unit IV

8. Solve the following minimal assignment problem :

	Man	I	II	III	IV	V
Task	A	1	3	2	3	6
	B	2	4	3	1	5
	C	5	6	3	4	6
	D	3	,	4	2	2
	E	1	5	6	5	4

9. Using algebraic method solve the game whose payoff matrix is given below :

Player A	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{4}}$
	3	2	4	0
$\mathbf{A}_{\mathbf{2}}$	3	4	2	4
$\mathbf{A}_{\mathbf{3}}$	4	2	4	0
$\mathbf{A}_{\mathbf{4}}$	0	4	0	8

Unit IV
8. Solve the following minimal assignment problem :

	Man	I	II	III	IV	V
Task	A	1	3	2	3	6
	B	2	4	3	1	5
	C	5	6	3	4	6
	D	3	1	4	2	2
	E	1	5	6	5	4

9. Using algebraic method solve the game whose payoff matrix is given below :

Player A	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{4}}$
	3	2	4	0
$\mathbf{A}_{\mathbf{1}}$	3	4	2	4
$\mathbf{A}_{\mathbf{2}}$	4	2	4	0
$\mathbf{A}_{\mathbf{3}}$	0	4	0	8
$\mathbf{A}_{\mathbf{4}}$				

