5. Use Big-M Method to solve the given LPP:

Maximize
$$Z = 5x_1 + 3x_2$$

Subject to constraints

$$2x_1 + 4x_2 \le 12$$

$$2x_1 + 2x_2 = 10$$

$$5x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

Unit III

6. Using Dual Simplex Method solve :

Maximize
$$Z = x_1 + 2x_2 + 3x_3$$

Subject to

$$2x_{1} - x_{2} + x_{3} \ge 4$$

$$x_{1} + x_{2} + 2x_{3} \le 8$$

$$x_{2} - x_{3} \ge 2$$

$$x_{1}, x_{2}, x_{3} \ge 0$$
15

7. Determine the optimal transportation plan and least transportation cost for the following table:

15

Plant	\mathbf{W}_{1}	$\mathbf{W_2}$	W_3	W_4	Availability
$\overline{F_1}$	11	20	7	8	50
F_2	21	16	10	12	40
F_3	8	12	18	9	70
Requiremen	t 30	25	35	40	

M-18A705 4

No. of Printed Pages: 05 Roll No.

18A705

Dual Degree B. Sc. (Hons.)/
M. Sc. Mathematics
EXAMINATION, Dec. 2018

(First Semester)

(Main Only)

MATHS

DMT223B

OPERATIONS RESEARCH-I

Time: 3 Hours [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: The question paper consists four Units and one compulsory question. The student should attempt a total *Five* questions, by selecting *one* question from each Unit and the compulsory question.

(1-06/52) M-18A705

P.T.O.

Compulsory Question

- 1. (a) Write the steps of formulation of a linear programming problem. 3
 - (b) Explain various terms like basic solution, feasible solution and degeneracy in a linear programming problem.3
 - (c) Write the principle of duality and convert the given LPP into its dual form: 3 Maximize $Z = 5x_1 + 3x_2$ Subject to

$$x_1 + x_2 \le 2$$

$$5x_1 + 2x_2 \le 10$$

$$3x_1 + 8x_2 \le 12$$

$$x_1, x_2 \ge 0$$

- (d) What do you mean by an assignment problem? Explain with the help of a suitable examples.3
- (e) Write the rules of dominance used to reduce the size of the payoff matrix in game theory.3

2

Unit I

- 2. Define the scope, methodology and applications of operation research.15
- 3. Solve the given LPP by graphically method : Maximize $Z = 20x_1 + 10x_2$ Subject to constraints

$$x_1 + 2x_2 \le 40$$

$$3x_1 + x_2 \ge 30$$

$$4x_1 + 3x_2 \ge 60$$

$$x_1, x_2 \ge 0$$

Also write the limitations of graphical method.

Unit II

4. Solve the following LPP by simplex method :

Maximize
$$Z = x_1 - 3x_2 + 3x_3$$

Subject to

$$3x_{1} - x_{2} + 2x_{3} \le 7$$

$$2x_{1} + 4x_{2} \ge -12$$

$$-4x_{1} + 3x_{2} + 8x_{3} \le 10$$

$$x_{1}, x_{2}, x_{3} \ge 0$$
15

(1-06/53) M-18A705

3

P.T.O.

Unit IV

8. Solve the following minimal assignment problem: 15

	Man	I	II	Ш	IV	\mathbf{V}
Task	A	1	3	2	3	6
	В	2	4	3	1	5
	\mathbf{C}	5	6	3	4	6
	D	3	1	4	2	2
	\mathbf{E}	1	5	6	5	4

9. Using algebraic method solve the game whose payoff matrix is given below:

	Player B						
Player A	B ₁	$\mathbf{B_2}$	$\mathbf{B_3}$	$\mathbf{B_4}$			
$\mathbf{A_1}$	3	2	4	0			
$\mathbf{A_2}$	3	4	2	4			
A_3	4	2	4	0			
$\mathbf{A_4}$	0	4	0	8			

Unit IV

8. Solve the following minimal assignment problem: 15

	Man	I	II	III	IV	\mathbf{V}
Task	A	1	3	2	3	6
	В	2	4	3	1	5
	\mathbf{C}	5	6	3	4	6
	D	3	1	4	2	2
	\mathbf{E}	1	5	6	5	4

9. Using algebraic method solve the game whose payoff matrix is given below:

	Player B						
Player A	B ₁	$\mathbf{B_2}$	B_3	$\mathbf{B_4}$			
$\mathbf{A_1}$	3	2	4	0			
$\mathbf{A_2}$	3	4	2	4			
$\mathbf{A_3}$	4	2	4	0			
$\mathbf{A_4}$	0	4	0	8			