- (b) Write the starting and stopping criteria of iterative methods used to solve the algebraic equations.6
- (c) Use the least-square curve fitting to find the best straight line which fits the following points:

 10

$$x = 1$$
 2 3 4 5 6
 $y = 2$ 5 10 17 26 37

Unit III

5. (a) A rod is rotating in a plane. The following table gives the angle *y* in radians through which the rod has turned for various values of time *x* in second. Calculate the angular velocity of the rod at time 0.4. Use the Stirlling's formula and choose the origin at 0.4 second:

$\boldsymbol{\mathcal{X}}$	f(x)
0	0
0.2	15
0.4	20
0.6	30
0.8	35

M-AA-283 4

No. of Printed Pages: 06 Roll No.

AA-283

M. Sc. EXAMINATION, May 2018

(First Semester)

(Re-appear Only)

PHY505B

PHYSICS

Computational Physics

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks. Students may be allowed to use simple calculator.

(3-12/13)M-AA-283

P.T.O.

Unit I

1. (a) Draw the sketch of computer organization and outline the role of its essential units.

10

- (b) Write a general syntax to read one and two dimenstional array.4
- (c) Write a general syntax for logical, arithmetic and nested if statements with suitable examples. 6
- 2. (a) When and how Do loop is used in Fortran programming. Also write the different rules for using Do loop and explain them with suitable examples.
 - (b) Find the value of the following expession for A = 7.0, B = 9.0, I = 8 and J = 3 (2*A**3+I/7+56)*J**2.
 - (c) Write the following expression in Fortran:

$$\frac{a+b}{2c^2}$$
 - $b(d-e)(a\times d)^2$ and

$$z = \sin\left|\frac{a-b}{a+b}\right| - \sqrt{5p^3 - r^{2x}}.$$

(d) Discuss in details the data types used in Fortran with examples.

M-AA-283

2

Unit II

- (a) Write a note with examples on machine and random errors.
 - (b) Construct the backward difference table from the following set of values: 6

$\boldsymbol{\mathcal{X}}$	f(x)
0	15
1	25
2	35
3	45
4	55
5	65

- (c) Give the graphical illustration of Bisection method and find the root of the equation $f(x) = x^2 4x 10 = 0$ using Bisection method.
- **4.** (a) Find the truncation error in computing the following function :

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$$

While x = 1/5 and you use first three terms.

(3-12/14)M-AA-283

3

P.T.O.

- (b) Find the value of y(1.4) through the differential equation $\frac{d^2y}{dx^2} = x\frac{dy}{dx} + y$ by fourth order Runge-Kutta method. While y(1) = 1 and $\frac{dy}{dx}$ at 1 is 2.
- 8. (a) Estimate the value of y at 0.4 using Fourth-Order Runge-Kutta Method, when $\frac{dy}{dx} = x^2 + y^2 \text{ with } y(0) = 0. \text{ Here use interval size } (h) = 0.2.$
 - (b) Calculate the value of y at x = 2 by Euler's method using interval size = 0.5, while $\frac{dy}{dx} = x + y$ with y(1) = 2. 10

6

(b) Find the f' at x = 1.7 and 2.8 by using the following data : 10

\boldsymbol{x}	f
1.0	22
1.5	102
2.0	322
2.5	722
3.0	822

- 6. (a) Compute the integral $\int_{-2}^{2} e^{x/5} dx$ using Gaussian two point formula.
 - (b) Evaluate $\int_{0}^{2} \int_{0}^{1} (x^2 + y^2) dx dy$ using Trapezoidal rule. Use step size equal to

Unit IV

7. (a) Using Taylor method solve the given differential equation for the interval

$$(0, 0.2)$$
, when $y(0) = 0$, $\frac{dy}{dx} = x^2 - y^2$.

Here use interval size (h) = 0.1. 10

(3-12/15)M-AA-283 5

0.5.

P.T.O.

10

30