(b) Write the starting and stopping criteria of iterative methods used to solve the algebraic equations.

6
(c) Use the least-square curve fitting to find the best straight line which fits the following points : $\mathbf{1 0}$

$$
\begin{aligned}
& x=\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& y=\begin{array}{llllll}
2 & 5 & 10 & 17 & 26 & 37
\end{array}
\end{aligned}
$$

Unit III

5. (a) A rod is rotating in a plane. The following table gives the angle y in radians through which the rod has turned for various values of time x in second. Calculate the angular velocity of the rod at time 0.4 . Use the Stirlling's formula and choose the origin at 0.4 second :

x	$f(x)$
0	0
0.2	15
0.4	20
0.6	30
0.8	35

AA-283

M. Sc. EXAMINATION, May 2018

(First Semester)

```
(Re-appear Only)
    PHY505B
    PHYSICS
```


Computational Physics

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks. Students may be allowed to use simple calculator.
P.T.O.

Unit I

1. (a) Draw the sketch of computer organization and outline the role of its essential units.
(b) Write a general syntax to read one and two dimenstional array.
(c) Write a general syntax for logical, arithmetic and nested if statements with suitable examples.

6
2. (a) When and how Do loop is used in Fortran programming. Also write the different rules for using Do loop and explain them with suitable examples.

10
(b) Find the value of the following expession for $\mathrm{A}=7.0, \mathrm{~B}=9.0, \mathrm{I}=8$ and $\mathrm{J}=3$ $(2 * \mathrm{~A} * * 3+\mathrm{I} / 7+56) * \mathrm{~J} * * 2$.

2
(c) Write the following expression in Fortran : 2

$$
\begin{gathered}
\frac{a+b}{2 c^{2}}-b(d-e)(a \times d)^{2} \text { and } \\
z=\sin \left|\frac{a-b}{a+b}\right|-\sqrt{5 p^{3}-r^{2 x}} .
\end{gathered}
$$

(d) Discuss in details the data types used in Fortran with examples.

Unit II

3. (a) Write a note with examples on machine and random errors.
(b) Construct the backward difference table from the following set of values : 6

x	$f(x)$
0	15
1	25
2	35
3	45
4	55
5	65

(c) Give the graphical illustration of Bisection method and find the root of the equation $f(x)=x^{2}-4 x-10=0$ using Bisection method.
4. (a) Find the truncation error in computing the following function :

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}
$$

While $x=1 / 5$ and you use first three terms.

4
P.T.O.
(b) Find the value of y (1.4) through the differential equation $\frac{d^{2} y}{d x^{2}}=x \frac{d y}{d x}+y$ by fourth order Runge-Kutta method. While $y(1)=1$ and $\frac{d y}{d x}$ at 1 is 2 . $\mathbf{1 0}$
8. (a) Estimate the value of y at 0.4 using Fourth-Order Runge-Kutta Method, when $\frac{d y}{d x}=x^{2}+y^{2}$ with $y(0)=0$. Here use interval size $(h)=0.2$.

10
(b) Calculate the value of y at $x=2$ by Euler's method using interval size $=0.5$, while $\frac{d y}{d x}=x+y$ with $y(1)=2 . \quad \mathbf{1 0}$
(b) Find the f^{\prime} at $x=1.7$ and 2.8 by using the following data :

x	f
1.0	22
1.5	102
2.0	322
2.5	722
3.0	822

6. (a) Compute the integral $\int_{-2}^{2} e^{x / 5} d x$ using Gaussian two point formula.
(b) Evaluate $\int_{0}^{2} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y \quad$ using Trapezoidal rule. Use step size equal to 0.5 .

Unit IV

7. (a) Using Taylor method solve the given differential equation for the interval $(0,0.2)$, when $y(0)=0, \frac{d y}{d x}=x^{2}-y^{2}$. Here use interval size $(h)=0.1$.
P.T.O.
