(b) Show that :
(i) $\quad \mathrm{H}_{n+1}(x)=2 x \mathrm{H}_{n}(x)-2 n$
$\mathrm{H}_{n-1}(x)$
(ii) $(2 n+1-x) \mathrm{L}_{n}^{1}(x)=\mathrm{L}_{n}(x)+$ $(n+1) \mathrm{L}_{n, 1}^{1}(x)+n \mathrm{~L}_{n, 1}^{1}(x)$
(iii) $\mathrm{P}_{n}(-1)=(-1)^{n}$

Unit III

5. (a) What do you understand by an analytic function? State and prove necessary and sufficient conditions for a function of complex variable to be analytic. Also the analyticity of $h(z)>\frac{1}{z}$. 10
(b) Applying calculus of residue, prove that :

$$
\left.\mathrm{I}=\int_{0}^{2 \theta} \frac{\sin ^{2} \rho}{a, b \cos \rho} d \rho \frac{\theta}{b^{2}} \right\rvert\,\left\{\begin{array}{ll}
a & \sqrt{a^{2} \cdot b^{2}}
\end{array}\right]
$$

where $a>b>0$.

AA-281

M. Sc. EXAMINATION, Dec. 2018
(First Semester)
(Re-appear Only)
PHYSICS
PHY-501-B
Mathematical Physics

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

1. (a) Define an orthogonal matrix. Show that the matrix

$$
A=\left|\begin{array}{cc}
\cos \rho & \operatorname{sip} p \\
f \cdot \sin \rho & \cos \gamma
\end{array}\right|
$$

is orthogonal.
(b) Construct a general unitary matrix of order 2.
(c) Prove that any two eigen vectors corresponding to two distinct eigen values of a Hermition matrix are orthogonal. 4
(d) Find the mutually perpendicular eigen vectors of the matrix :

8

$$
A=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & H \\
-0 & 1 & 0
\end{array}\right| .
$$

2. (a) Prove that every tensor of second rank can be resolved into symmetric and antisymmetric tensor.
(b) Define the fundamental tensor. Determine the fundamental tensor in terms of cylindrical coordinate system. $\mathbf{1 0}$
(c) Component of a first rank tensor in rectangular Cartesion co-ordinate system are given by $x y, 2 y . z^{2}, x z$. Write its covariant component in spherical coordinates.

Unit II

3. (a) Solve the following differential equation by Frobenius Method :

$$
x y^{\prime \prime}, y^{\prime}, x^{2} y>0
$$

(b) Deduce the integral representation of a Bersel function.
(c) Show that $\mathrm{J} n(. x)>(.1)^{n} \mathrm{~J} n(x)$. 4
4. (a) Establish the expression for $\mathrm{P}_{n}(x)$ from generating function technique.
P.T.O.
6. (a) Evaluate the following complex integration using Cauchy integral formula :

$$
\int_{\mathrm{C}} \frac{\left(3 z^{2}, z, 1\right) d z}{\left(z^{2} \cdot 1\right)(z, 3)}
$$

where C is $|z|=2$.
(b) Prove that:

$$
\int_{0}^{f} \frac{\sin m x}{x} d x>\frac{\theta}{2}, m ? 0 .
$$

Unit IV

7. (a) Find the Fourier series for the periodic function $f(x)$ given by :

$$
f(x)>\left\{\begin{array}{cl}
\theta & \text { if. } \theta=x \quad 0 \\
x & \text { if } 0=x=\theta
\end{array}\right.
$$

Hence prove that

$$
\begin{equation*}
\frac{\theta^{2}}{8}>\frac{1}{1^{2}}, \frac{1}{3^{2}}, \frac{1}{5^{2}}, \ldots \ldots \ldots \tag{7}
\end{equation*}
$$

(b) Show that convolution of two Gaussian functions : 7

$$
\mathrm{F}(t) e^{\cdot t^{2} / \beta^{2}} \text { and } \mathrm{G}(t)=e^{\cdot t^{2} / \chi^{2}}
$$

is another Gaussian function

$$
\mathrm{F}(t) * \mathrm{G}(t)=\beta\left|\frac{\theta}{\left.\beta^{2}, \chi^{2}\right)}\right| e^{\cdot t^{2} /\left(\beta^{2}, \chi^{2}\right)}
$$

(c) Find:
(i) $\mathrm{L}\left|f t^{2} e^{5 t} \sin 3 \mathrm{f}\right|$
(ii) L $\left.\frac{\sin 6 t}{f} \right\rvert\,$
(iii) $\mathrm{L}\left|\int_{0}^{t} \frac{\sin y}{t} d x\right|$.
8. (a) Evaluate :

$$
\mathrm{L}^{-1}\left|\frac{1}{\mid(s, 1)(s .2)^{2}}\right|
$$

(b) Show that :
(c) Find Fourier transform of function : 6

