(b) Show that:

10

- No. of Printed Pages: 07
- Roll No.

- (i) $H_{n+1}(x) = 2x H_n(x) 2n$ $H_{n-1}(x)$
- (ii) $(2n + 1 x) L_n^1(x) = L_n(x) + (n + 1) L_{n+1}^1(x) + n L_{n+1}^1(x)$
- (iii) $P_n (-1) = (-1)^n$

Unit III

- 5. (a) What do you understand by an analytic function? State and prove necessary and sufficient conditions for a function of complex variable to be analytic. Also the analyticity of $h(z) > \frac{1}{z}$.
 - (b) Applying calculus of residue, prove that:

$$I = \int_{0}^{2\theta} \frac{\sin^{2} \rho}{a, b \cos \rho} d\rho > \frac{2\theta}{b^{2}} \left[a. \sqrt{a^{2}.b^{2}} \right]$$
where $a > b > 0$.

AA-281

M. Sc. EXAMINATION, Dec. 2018

(First Semester)

(Re-appear Only)

PHYSICS

PHY-501-B

Mathematical Physics

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(1-01) M-AA-281

P.T.O.

Unit I

1. (a) Define an orthogonal matrix. Show that the matrix:

$$A = \begin{bmatrix} \cos \rho & \sin \rho \\ \sin \rho & \cos \rho \end{bmatrix}$$

is orthogonal.

- (b) Construct a general unitary matrix of order 2.
- (c) Prove that any two eigen vectors corresponding to two distinct eigen values of a Hermition matrix are orthogonal. 4
- (d) Find the mutually perpendicular eigen vectors of the matrix: 8

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

2. (a) Prove that every tensor of second rank can be resolved into symmetric and antisymmetric tensor.

M-AA-281

2

- (b) Define the fundamental tensor. Determine the fundamental tensor in terms of cylindrical coordinate system.10
- (c) Component of a first rank tensor in rectangular Cartesion co-ordinate system are given by xy, 2y. z^2, xz . Write its covariant component in spherical coordinates.

Unit II

- 3. (a) Solve the following differential equation by Frobenius Method: 10 $xv'', v', x^2v > 0$.
 - (b) Deduce the integral representation of a Bersel function.6
 - (c) Show that $J_n(. x) > (. 1)^n J_n(x)$. 4
- **4.** (a) Establish the expression for $P_n(x)$ from generating function technique. **10**
- (1-01) M-AA-281

3

P.T.O.

6. (a) Evaluate the following complex integration using Cauchy integral formula:

$$\int_{C} \frac{(3z^{2}, z, 1) dz}{(z^{2}.1)(z, 3)}$$

where C is |z| = 2.

10

(b) Prove that:

10

$$\int_{0}^{f} \frac{\sin mx}{x} dx > \frac{\theta}{2}, m ? 0.$$

Unit IV

7. (a) Find the Fourier series for the periodic function f(x) given by:

$$f(x) > \begin{cases} . & \theta & \text{if } . & \theta = x = 0 \\ x & \text{if } 0 = x = \theta \end{cases}$$

Hence prove that

$$\frac{\theta^2}{8} > \frac{1}{1^2}, \frac{1}{3^2}, \frac{1}{5^2}, \dots 7$$

(1-01) M-AA-281

5

P.T.O.

(b) Show that convolution of two Gaussian functions:

$$F(t) e^{t^2/\beta^2}$$
 and $G(t) = e^{t^2/\chi^2}$

is another Gaussian function

$$F(t) * G(t) = \beta \chi \left| \frac{\theta}{\beta^2, \chi^2} \right| e^{-t^2/(\beta^2, \chi^2)}$$

- (c) Find: 6
 - (i) $L \mid_{t} t^2 e^{5t} \sin 3t$
 - (ii) $L \left| \frac{\sin 6t}{t} \right|$
 - (iii) $L \left[\int_{0}^{t} \frac{\sin y}{t} dy \right].$
- **8.** (a) Evaluate :

$$L^{-1} \left[\frac{1}{(s, 1)(s. 2)^2} \right]$$

2

M-AA-281

(b) Show that:

$$L \left| \int_{0}^{f} \frac{\sin tx}{\sqrt{x}} dx \right| > \frac{\theta}{\sqrt{2s}}.$$

(c) Find Fourier transform of function: 6

$$f(t) > \begin{cases} 1 \cdot t^2 & |t|/1 \\ 0 & |t|?1 \end{cases}$$

6