8. If μ is a measure defined on a σ -algebra M containing the Baire sets. Assume that either that μ is inner regular. Then for each $E \in M$ with $\sigma E < \infty$, there is a Baire set B with μ (E Δ B) = 0.

No. of Printed Pages: 04 Roll No.

JJ341

M. Sc. EXAMINATION, May 2019

(5 Years Integrated)

(Tenth Semester)

(B Scheme) (Main & Re-appear)

B. Sc. (Hons.) M. Sc. (Mathematics)

MATHEMATICS

MAT612H

Inner Product Spaces and Advanced Measure Theory

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: The question paper consist of four Units. Each unit contains two questions and the students asked to attempt a total *five*, selecting atleast *one* question from each Unit.

M-JJ341 4 80 (1-01/17) M-JJ341 P.T.O.

Unit I

- **1.** (a) Prove that Inner Product in an Hilbert space is jointly continuous.
 - (b) Prove that in an inner product space, if $\langle x_n \rangle$ and $\langle y_n \rangle$ are Cauchy sequence of vectors, then $\{(\langle x_n, y_n \rangle)\}$ is Cauchy sequence of scalars.
- 2. (a) Prove that a closed convex subset of a Hilbert Space H contains a unique vector of smallest norm.
 - (b) State and prove riesz representation theorem for Hilbert Space.

Unit II

- **3.** Prove that the adjoint operator $T \to T^*$ on B(H) has the following properties :
 - (a) $(T_1 + T_2)^* = T_1^* + T_2^*$
 - (b) $(\alpha T)^* = \overline{\alpha} T^*$
 - (c) $(T_1T_2)^* = T_2^*T_1^*$
 - (d) $T^{**} = T$
 - (e) $||T^*|| = ||T||$

M-JJ341

2

- 4. (a) Prove that if T is an operator's on H, then T is normal ⇔ its real and imaginary parts commute.
 - (b) Prove that if P is the projection on a closed lienar subspace M of H, then M reduces an operator $T \Leftrightarrow TP = PT$.

Unit III

- 5. Prove that if E and F are measurable sets and v is a signed measure such that $E \subset F$ and $|vF| < \infty$, then $|vE| < \infty$.
- **6.** (a) State and prove Jordan Decomposition Theorem.
 - (b) Prove that the set function $u \times v : S \times \Sigma$ $\rightarrow [0, \infty]$ defined by $u \times v$ (A × B) = u(A).v(B) for each A × B \in S × Σ is a measure.

Unit IV

7. Prove that the class σ of μ -measurables set is a σ -algebra. if $\overline{\mu}$ is restricted to β , then $\overline{\mu}$ is a complete measure on β .

(1-01/18) M-JJ341

3

P.T.O.