8. If μ is a measure defined on a σ-algebra M containing the Baire sets. Assume that either that μ is inner regular. Then for each $\mathrm{E} \in \mathrm{M}$ with $\sigma \mathrm{E}<\infty$, there is a Baire set B with $\mu(\mathrm{E} \Delta \mathrm{B})=0$.

JJ341

M. Sc. EXAMINATION, May 2019

(5 Years Integrated)
(Tenth Semester)
(B Scheme) (Main \& Re-appear)
B. Sc. (Hons.) M. Sc. (Mathematics)

MATHEMATICS
MAT612H
Inner Product Spaces and Advanced
Measure Theory

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : The question paper consist of four Units. Each unit contains two questions and the students asked to attempt a total five, selecting atleast one question from each Unit.
(1-00/17) M-JJ341
P.T.O.

Unit I

1. (a) Prove that Inner Product in an Hilbert space is jointly continuous.
(b) Prove that in an inner product space, if $<x_{n}>$ and $\left.<y_{n}\right\rangle$ are Cauchy sequence of vectors, then $\left\{\left(<x_{n}, y_{n}>\right)\right\}$ is Cauchy sequence of scalars.
2. (a) Prove that a closed convex subset of a Hilbert Space H contains a unique vector of smallest norm.
(b) State and prove riesz representation theorem for Hilbert Space.

Unit II

3. Prove that the adjoint operator $\mathrm{T} \rightarrow \mathrm{T}^{*}$ on $\mathrm{B}(\mathrm{H})$ has the following properties :
(a) $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)^{*}=\mathrm{T}_{1}{ }^{*}+\mathrm{T}_{2}{ }^{*}$
(b) $(\alpha \mathrm{T})^{*}=\bar{\alpha} \mathrm{T}^{*}$
(c) $\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}=\mathrm{T}_{2}{ }^{*} \mathrm{~T}_{1}{ }^{*}$
(d) $\mathrm{T}^{* *}=\mathrm{T}$
(e) $\left\|\mathrm{T}^{*}\right\|=\|\mathrm{T}\|$
4. (a) Prove that if T is an operator's on H , then T is normal \Leftrightarrow its real and imaginary parts commute.
(b) Prove that if P is the projection on a closed lienar subspace M of H, then M reduces an operator $\mathrm{T} \Leftrightarrow \mathrm{TP}=\mathrm{PT}$.

Unit III

5. Prove that if E and F are measurable sets and v is a signed measure such that $\mathrm{E} \subset \mathrm{F}$ and $|v \mathrm{~F}|<\infty$, then $|v \mathrm{E}|<\infty$.
6. (a) State and prove Jordan Decomposition Theorem.
(b) Prove that the set function $u \times v: \mathrm{S} \times \Sigma$ $\rightarrow[0, \infty]$ defined by $u \times v(\mathrm{~A} \times \mathrm{B})=$ $u(\mathrm{~A}) \cdot v(\mathrm{~B})$ for each $\mathrm{A} \times \mathrm{B} \in \mathrm{S} \times \Sigma$ is a measure.

Unit IV

7. Prove that the class σ of μ-measurables set is a σ-algebra. if $\bar{\mu}$ is restricted to β, then $\bar{\mu}$ is a complete measure on β.
P.T.O.
