- (b) Discuss the applications of magnetochemistry in determining the structure of metal complexes.8
- (c) Explain the relationship between magnetic susceptibility and magnetic moment. 4

Unit III

- 5. (a) Discuss its mechanism and the various factors which affect the rate constant of simple acid hydrolysis reaction.12
 - (b) Explain with example how the substitution reaction takes place in octahedral complexes without the rupture of metal ligand bond.8
- **6.** Explain the detail inert and labile complexes with at least two examples of each. What do you mean by reactivity of metal complexes?

4

M-BB-291

20

No. of Printed Pages: 05 Roll No.

BB-291

M. Sc. EXAMINATION, Dec. 2018

(Second Semester)

(Re-appear Only)

CHEMISTRY

CH502B

Inorganic Chemistry-II

(Coordination Chemistry)

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. All questions carry equal marks.

(3-28/1) M-BB-291

P.T.O.

Unit I

- 1. (a) Draw and discuss the combined energy level for d^1 , d^4 , d^6 and d^9 complexes in octahedral and tetrahedral field. 10
 - (b) Derive the ground electronic state term symbols for free and coordinated metal ion in $[VX_4]^{2-}$ and $[CoY_6]^{3+}$, where x and y are monodentate anionic (having unit charge) and neutral ligands respectively.
 - (c) What do you mean by spin orbit coupling? Explain.
- 2. (a) Using orgel diagram for an octahedral V(III) complex, describe the determination of value of dq and b parameters.
 - (b) Elaborate all the d electron transitions found in the spectra of $[Co(CNS)_4]^{2-}$ ion.

2

10

Unit II

3. (a) Define the following terms:

9

- (i) Magnetic moment
- (ii) Intensity of magnetization
- (iii) Magnetic susceptibility.
- (b) Predict the value of spin magnetic moment for $[Mn(H_2O)_6]^{2+}$ and $[Fe(CN)_6]^{4-}$.
- (c) Discuss the phenomenon of orbital contribution to magnetic moment. Give electronic configuration in which orbital contribution is quenched.
- 4. (a) Magnetic measurements on CuSO₄.5H₂O at 293 K using a Gouy's balance gave valve of volume susceptibility 1.7×10⁻⁴. The molecular weight and density are 250 and 2.29 g/cm³. Calculate magnetic moment by ignoring small diamagnetic contribution.
 8

(3-28/2) M-BB-291

3

P.T.O.

Unit IV

- 7. (a) Explain in detail the mechanism in one electron transfer reactions. 15
 - (b) How will you prepare the various isomers of [PtCl(NH₃)Br(NO₂)] starting from [PtCl₄]²⁻?
- 8. Discuss inner sphere and outer sphere mechanism by suitable examples.20

Unit IV

- 7. (a) Explain in detail the mechanism in one electron transfer reactions.
 - (b) How will you prepare the various isomers of $[PtCl(NH_3)Br(NO_2)]$ starting from $[PtCl_4]^{2-}$?
- 8. Discuss inner sphere and outer sphere mechanism by suitable examples. 20

M-BB-291 5 10 (3-28/3) M-BB-291 5 10