6. (a) What are enzymatic reactions ? Give Michaelis-Menton treatment of these reactions and hence define MichaclisMenton constant. Also discuss the extreme conditions of high and low concentrations of substrate. $\mathbf{1 2}$
(b) Evaluate Michaelis's constant for enzymesubstrate binding by Lineweaver-Burk plot.

## Unit IV

7. (a) What do you mean by the following terms.
Width and intensity of spectral lines. 10
(b) What kind of spectrum will you get for a non-rigid rotator of diatomic molecules and how ? Show the spectra. $\mathbf{1 0}$
8. (a) How will you get the rotational fine structure in case of electronic-vibration transition ?

10
(b) What is Fortrat diagram ? Explore the infomration obtained by labelling Fortrat diagram.10
$\qquad$

## BB-293

## M. Sc. EXAMINATION, May 2017

(Second Semester)
(Main \& Re-appear)
CH-506-B
CHEMISTRY
Physical Chemistry-II
(Kinetics, Quantum Mechanics and
Spectroscopy)

Time : 3 Hours]
[Maximum Marks : 100
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: The question paper comprises of eight questions, two from each Unit. The candidates are required to attempt Five
(3-08/19)M-BB-293
P.T.O.
questions selecting at least one question from each Unit. All questions carry equal marks. Log tables and single memory caclulator may be used.

## Unit I

1. (a) Give formulation of Schrödinger wave equation.

8
(b) Briefly explain all the postulates of quantum mechanics with examples wherever possible. 12
2. (a) Solve Schrödinger wave equation for a particle in one-dimensional box and explain the rusults obtained. $\mathbf{1 0 , 1 0}$
(b) Evaluate the expectation values of $x, x^{2}$, $p$ and $p^{2}$ for a particle in one-dimensional box of length and show that the product of root mean square uncertainties in $p$ and $x$ is greater then $h / 2 \pi$.

## Unit II

3. (a) What are consecutive or sequential reactions ? Give kinetics of these reactions by explaining their conclusions.
(b) How are reaction rates affected by temperature ? Also define temperature coefficient.
4. (a) State and explain collision theorem of bimolecular gaseous reactions. Give its significance and compare it with Arrhenius equation. 10
(b) What are ionic reactions ? Give singlesphere model of activated complex and also discuss its results.

## Unit III

5. (a) What are the reactions ? Explain the kinetics of reactions between $\mathrm{H}_{2}$ and $\mathrm{Br}_{2}$.
(b) Discuss decomposition of ethane and hence give chain length.
P.T.O.
