BB315

M. Sc. EXAMINATION, 2020

(Second Semester)

(B Scheme)

(Re-appear)

MATHEMATICS

MAT510B

COMPLEX ANALYSIS

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) State necessary and sufficient condition for a function to be analytic. Prove the necessary condition for a function f(z) to be analytic.
 - (b) Show that the function $u(x, y) = e^x \cos y$ is harmonic. Determine its harmonic conjugate and analytic function f(z).
- 2. (a) Find the domain of convergence of the series :

(i)
$$\sum_{n=0}^{\infty} n^2 \left(\frac{z^2 + 1}{1+i} \right)^n$$
 (ii) $\sum_{n=1}^{\infty} 4^{-n} \frac{(z+2)^{n-1}}{(n+1)^3}$.

(b) State and prove Cauchy Hadmard Theorem.

Unit II

- 3. (a) Define Complex Integration. Verify Cauchy theorem for the function $f(z) = e^z$ along the boundary of triangle having vertices 1 + i, -1 + i, -1 i.
 - (b) State and prove Morera's Theorem.
- **4.** (a) State and prove Maximum Modulus principle. Also deuce Minimum Modulus Principle.
 - (b) Evaluate the following integrals:

(i)
$$\int_{c} \frac{4-3z}{z(z-1)(z-2)} dz$$
, where $c: |z| = \frac{3}{2}$

(ii) Evaluate $\int_c |z| dz$, an taking c is upper half part and right half part.

Unit III

- (a) Discuss the following transformations:
 Jacobian, Translation, Rotation, Magnification and Inversion and Conformal.
 - (b) State necessary and sufficient condition for a transformation w = f(z) to be conformal and prove necessary part only.
- 6. (a) Define the Mobius transformation. Find the Mobius transformation which maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$ into the points $w_1 = 1$ $w_2 = i$, $w_3 = -i$.
 - (b) Define fixed point, cross ratio, inverse points and critical points. Find the fixed points and normal form of the Mobius transformation $w = \frac{3z 4}{z 1}$.

Unit IV

7. (a) State Taylor's and Laurent series. Express $f(z) = \frac{z^2 - 1}{(z + 2)(z + 3)}$ as Taylor's or Laurent series in the regions |z| < 2, 2 < |z| < 3.

(1-12/59) M-BB315

(b) Discuss the nature of singularity of the following functions:

(i)
$$e^z$$
 at $z = \infty$

(ii)
$$\frac{(z-\sin z)}{z^3} \text{ at } z=0$$

(iii)
$$f(z) = \sqrt{z-3}$$
 at $z = 3$.

- **8.** (a) State Cauchy Residue theorem. Evaluate using Residue theorem $\int_0^\infty \frac{dx}{(1+x)^2}$.
 - (b) State Argument principle and Rouche's theorem. Using Rouche's theorem prove that all the roots of $z^8 5z + 14$ lies between the circles |z| = 1 and |z| = 2.