BB315

M. Sc. EXAMINATION, 2020

(Second Semester)
(B Scheme)
(Re-appear)
MATHEMATICS
MAT510B
COMPLEX ANALYSIS

Time : 3 Hours]
[Maximum Marks : 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

1. (a) State necessary and sufficient condition for a function to be analytic. Prove the necessary condition for a function $f(z)$ to be analytic.
(b) Show that the function $u(x, y)=e^{x} \cos y$ is harmonic. Determine its harmonic conjugate and analytic function $f(z)$.
2. (a) Find the domain of convergence of the series:
(i) $\quad \sum_{n=0}^{\infty} n^{2}\left(\frac{z^{2}+1}{1+i}\right)^{n}$
(ii) $\quad \sum_{n=1}^{\infty} 4^{-n} \frac{(z+2)^{n-1}}{(n+1)^{3}}$.
(b) State and prove Cauchy Hadmard Theorem.

Unit II

3. (a) Define Complex Integration. Verify Cauchy theorem for the function $f(z)=e^{z}$ along the boundary of triangle having vertices $1+i,-1+i,-1-i$.
(b) State and prove Morera's Theorem.
4. (a) State and prove Maximum Modulus principle. Also deuce Minimum Modulus Principle.
(b) Evaluate the following integrals :
(i) $\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$, where $c:|z|=\frac{3}{2}$
(ii) Evaluate $\int_{c}|z| d z$, an taking c is upper half part and right half part.

Unit III

5. (a) Discuss the following transformations :

Jacobian, Translation, Rotation, Magnification and Inversion and Conformal.
(b) State necessary and sufficient condition for a transformation $w=f(z)$ to be conformal and prove necessary part only.
6. (a) Define the Mobius transformation. Find the Mobius transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$ into the points $w_{1}=1 w_{2}=i, w_{3}=-i$.
(b) Define fixed point, cross ratio, inverse points and critical points. Find the fixed points and normal form of the Mobius transformation $w=\frac{3 z-4}{z-1}$.

Unit IV

7. (a) State Taylor's and Laurent series. Express $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ as Taylor's or Laurent series in the regions $|z|<2,2<|z|<3$.
(b) Discuss the nature of singularity of the following functions :
(i) e^{z} at $z=\infty$
(ii) $\frac{(z-\sin z)}{z^{3}}$ at $z=0$
(iii) $f(z)=\sqrt{z-3}$ at $z=3$.
8. (a) State Cauchy Residue theorem. Evaluate using Residue theorem $\int_{0}^{\infty} \frac{d x}{(1+x)^{2}}$.
(b) State Argument principle and Rouche's theorem. Using Rouche's theorem prove that all the roots of $z^{8}-5 z+14$ lies between the circles $|z|=1$ and $|z| 2$.
