(b) Let a rectangular domain D be bounded by $x=0, y=0, x=2, y=1$. Determine the region D^{\prime} of the w-plane into which D is mapped under the transformation $w=z+(1-2 i)$.

10
6. (a) Define cross-ratios and show that they are invariant under a bilinear transformation.

10
(b) Find the fixed point and normal form of the bilinear transformation :

$$
\mathrm{W}=\frac{z-1}{z+1}
$$

Unit IV

7. (a) Define Laurent's series. Expland the function $f(z)=\frac{1}{z^{2}-3 z+2}$ as a series in the region :
(i) $0<|z|<1$
(ii) $1<|z|<2$
(iii) $|z|>3$.

BB-315

M. Sc. EXAMINATION, Dec. 2017
(Second Semester)
(Re-appear Only)
MATHEMATICS
MAT-510-B
Complex Analysis

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) State and obtain sufficient condition for a function $f(z)$ to be analytical.

10
(b) If $w=f(z)=u+i v$ is analytical function and $u-v=e^{x}(\cos y-\sin y)$. Find W in terms of z.

10
2. (a) The sum function $f(z)$ of the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ represent an analytical function inside the circle of convergence. 14
(b) Find the domain of convergence of the series :

$$
\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \ldots \ldots .(2 n-1)}{n!}\left(\frac{1-z}{z}\right)^{h}
$$

Unit II

3. (a) Define complex line integral and evaluate the integral :

10

$$
\int_{0}^{1+i}\left(x-y+i x^{2}\right) d z
$$

M-BB-315 2
(i) Along the straight from $z=0$ to $z=1+i$.
(ii) Along the real axis from $z=0$ to $z=1$ and then along a line parallel to the imaginary axis from $z=1$ to $z=1+i$.
(b) State and prove Cauchy's integral formula. 10
4. (a) State and prove Morera's theorem.

10
(b) State and prove maximum modulus principle and hence also deduce minimum modulus principle.

Unit III

5. (a) State necessary conduction for $w=f(z)$ to be a conformal mapping and hence obtain it.
P.T.O.
(b) Discuss various kinds of singularity and prove that $f(z)$ can be explanded in form
$\frac{1}{z^{2}}-\frac{1}{2 z}+a_{0}+a_{1} z^{2}+a_{4} z^{4}+\ldots \ldots \ldots \ldots \ldots$.
where $0<|z|<2 \pi$ and $f(z)=\frac{1}{z\left(e^{z}-1\right)}$.
6. (a) State and prove Rouche's theorem and using this theorem prove that every polynomial of degree n has n zeros. 14
(b) Apply the calculus of residue, to prove that :

6

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}
$$

(b) Discuss various kinds of singularity and prove that $f(z)$ can be explanded in form $\frac{1}{z^{2}}-\frac{1}{2 z}+a_{0}+a_{1} z^{2}+a_{4} z^{4}+$ \qquad where $0<|z|<2 \pi$ and $f(z)=\frac{1}{z\left(e^{z}-1\right)}$.
8. (a) State and prove Rouche's theorem and using this theorem prove that every polynomial of degree n has n zeros. 14
(b) Apply the calculus of residue, to prove that : 6

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}
$$

