(b) Define cross ratio. Prove that cross ratios are invariant under a bilinear transformation. 10

Unit IV

7. (a) If $f(z)$ is analytic in a circular domain D with centre a, then for every $z \in \mathrm{D}$:

$$
f(z)=\sum_{n=0}^{\infty} \frac{(z-a)^{n}}{n!} f^{n}(a)
$$

so that $f(z)$ can be expressed as a power series about $z=a$.
(b) State Rouche's theorem and apply it to show that all roots of the equation $z^{7}-5 z^{3}+12=0$ lies between the circles $|z|=1$ and $|z|=2$.
8. (a) Discuss the nature of singularity of the following functions :
(i) $f(z)=e^{z}$ at $z=\infty$
\qquad

BB315

M. Sc. EXAMINATION, May 2019

(Second Semester)
(B. Scheme) (Re-appear)
MATHEMATICS
MAT510B
Complex Analysis

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
(4-10/19) M-BB315
P.T.O.

Unit I

1. (a) Obtain Cauchy-Riemann equation for an analytical function.

10
(b) Show that $f(z)-e^{-z^{4}}(z \neq 0)$ and $f(0)=0$ is not analytic at origin although Cauchy-Riemann equations are satisfied at origin.

10
2. (a) Show that function $u(x, y)=e^{x} \cos y$ is harmonic. Determine its conjugate and analytic function $f(z)$.
(b) Find the domain of convergence of the series :

$$
\sum_{n=1}^{\infty} \frac{1.3 \cdot 5 \ldots \ldots .(2 n-1)}{n!}\left(\frac{1-z}{z}\right)^{n}
$$

Unit II

3. (a) State and prove Cauchy's integral formula for higher order derivatives and evaluate the integral :

10
M-BB315
2

$$
\int_{\mathrm{C}} \frac{e^{z}}{(z+1)^{2}} d z, \mathrm{C}:|z-1|=3
$$

(b) State and prove Morera's theorem.
4. (a) State and prove Schwarz Lemma.
(b) State and prove Poisson's integral formula.

Unit III

5. (a) Define conformal mapping. State and prove sufficient condition for $w=f(z)$ to represent a conformal mappings. $\quad 10$
(b) By the transformation $w=z^{2}$, show that the circle $|z-a|=c, a$ and c being real, in z-plane correspond to Limacons : 10

$$
\mathrm{R}=2 c(a+c \cos \phi)
$$

6. (a) Prove that every bilinear transformation can be expressed as the resultant of an even number of inversions.
(ii) $\quad f(z)=\tan \frac{1}{2}$ at $z=0$
(iii) $f(z)=\cos -\sin z$ at $z=\infty$
(iv) $f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{1+\left(2^{n} z\right)^{2}}$
(v) $\quad f(z)=e^{-\frac{1}{z^{2}}}$
(b) Show by Contour integration:

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}
$$

10
(b) Show by Contour integration :

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}
$$

