- (b) Define uniform distribution. If X_1 and X_2 are independent rectangular variates on [0, 1], find the distribution of :
 - (i) X_1/X_2
 - (ii) $X_1.X_2$.
- **6.** (a) Six dice are thrown 729 times. How many times do you expect at least three dice to show as five or six?
 - (b) Derive normal distribution as a limiting case of binomial distribution.

Unit IV

- 7. (a) Discuss some important properties of regression coefficients.
 - (b) State and prove central limit theorem.
- **8.** (a) Explain Chi-square test of goodness of fit.
 - (b) Define Student's *t*-distribution and discuss its applications.

No. of Printed Pages: 04 Roll No.

BB-313

M. Sc. EXAMINATION, Dec. 2017

(Second Semester)

(Re-appear Only)

MATHEMATICS

MAT-506-B

Methods of Applied Mathematics

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-46/9) M-BB-313 P.T.O.

Unit I

1. (a) Find the Fourier cosine transform of the function :

$$f(z) = \begin{bmatrix} \cos x & , & 0 < x < 1 \\ 0 & , & \text{otherwise} \end{bmatrix}$$

- (b) State and prove Parseval'is identity.
- 2. Solve by the use of Fourier transform:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, -\infty < x < \infty, \ y > 0$$

with $u(x, 0) = f(x), -\infty < x < \infty$, u is bounded

as
$$y \to \infty$$
, u and $\frac{\partial u}{\partial x}$ both vanish as $|x| \to \infty$.

Unit II

3. (a) Show that if u, v, w are orthogonal curvilinear coordinates, then $\frac{\partial \overline{r}}{\partial u}$, $\frac{\partial \overline{r}}{\partial v}$, $\frac{\partial \overline{r}}{\partial w}$ and ∇u , ∇v , ∇w are reciprocal system of vectors.

2

spherical coordinates.

(b) Express the vector xi + 2yj + yzk in

4. Obtain the expression for the curl of a vector point function in orthogonal curvilinear coordinates and deduce the expression in cylinderical and spherical coordinates.

Unit III

5. (a) A random variable X has the following probabiltiy function value of X,

\boldsymbol{x}	p(x)
0	0
1	k
2	2k
3	2k
4	3k
5	k^2
6	$2k^{2}$
7	$k + 7k^2$

- (i) Find k
- (ii) Evaluate P(X < 6), $P(X \ge 6)$, P(3 < X < 6).

(3-46/10)M-BB-313

3

P.T.O.

M-BB-313