(b) Define uniform distribution. If X_{1} and X_{2} are independent rectangular variates on $[0,1]$, find the distribution of :
(i) X_{1} / X_{2}
(ii) $\mathrm{X}_{1} \cdot \mathrm{X}_{2}$.
6. (a) Six dice are thrown 729 times. How many times do you expect at least three dice to show as five or six ?
(b) Derive normal distribution as a limiting case of binomial distribution.

Unit IV

7. (a) Discuss some important properties of regression coefficients.
(b) State and prove central limit theorem.
8. (a) Explain Chi-square test of goodness of fit.
(b) Define Student's t-distribution and discuss its applications.
\qquad

BB-313

M. Sc. EXAMINATION, Dec. 2017

(Second Semester)
(Re-appear Only)
MATHEMATICS
MAT-506-B
Methods of Applied Mathematics

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Find the Fourier cosine transform of the function :

$$
f(z)=\left[\begin{array}{lll}
\cos x & , & 0<x<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(b) State and prove Parseval' is identity.
2. Solve by the use of Fourier transform :

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,-\infty<x<\infty, y>0
$$

with $u(x, 0)=f(x),-\infty<x<\infty, u$ is bounded
as $y \rightarrow \infty, u$ and $\frac{\partial u}{\partial x}$ both vanish as $|x| \rightarrow \infty$.

Unit II
3. (a) Show that if u, v, w are orthogonal curvilinear coordinates, then $\frac{\partial \bar{r}}{\partial u}, \frac{\partial \bar{r}}{\partial v}, \frac{\partial \bar{r}}{\partial w}$ and $\nabla u, \nabla v, \nabla w$ are reciprocal system of vectors.
(b) Express the vector $x i+2 y j+y z k$ in spherical coordinates.
4. Obtain the expression for the curl of a vector point function in orthogonal curvilinear coordinates and deduce the expression in cylinderical and spherical coordinates.

Unit III

5. (a) A random variable X has the following probabiltiy function value of X ,

x	$p(x)$
0	0
1	k
2	$2 k$
3	$2 k$
4	$3 k$
5	k^{2}
6	$2 k^{2}$
7	$k+7 k^{2}$

(i) Find k
(ii) Evaluate $\mathrm{P}(\mathrm{X}<6), \mathrm{P}(\mathrm{X} \geq 6)$, $\mathrm{P}(3<\mathrm{X} \leq 6)$.
P.T.O.

