5. (a) Find the equation of the cone with vertex $(1,1,1)$ and passing through the curve of itner-section of $x^{2}+y^{2}+z^{2}=1$ and $x+y+z=1$.
(b) Find the equation of the right circular cylinder whose axis is $x=2 y=-z$ and radius 4.

Unit III

6. (a) Prove that the six normals from a point to an ellipsoid lie on a curve of second degree.
(b) Find the equations of the tangent planes to $3 x^{2}+2 y^{2}-6 z^{2}=5$ which pass through the lines $3 x-y-9 z=0$ and $6 x+3 y-3 z-5=0$.
7. (a) Find the locus of the straight lines drawn through a fixed point (α, β, γ) at right angles to its polars w.r.t the conicoid $a x^{2}+b y^{2}+c z^{2}=1$.

18B703

Dual Degree B. Sc. (Hons.) /M. Sc. EXAMINATION, May 2019
(Second Semester)
(Main Only)
MATHEMATICS
DMT216B
SOLID GEOMETRY

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. Q. No. 1 is compulsory. Attempt all parts together of a question. All questions carry equal marks.
(1-02/20) M-18B703
P.T.O.

(Compulsory Question)

1. (a) Find the coordinates of the centre of the conic :

$$
x^{2}-3 x y+y^{2}+10 x-10 y+21=0
$$

(b) Find the equation of the tangent to the conic :

$$
x^{2}+2 x y-y^{2}+2 x+4 y+1=0
$$

at the point $(-2,1)$.
(c) Find the centre and radius of the sphere :
$2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y+2 z-5=0$.
(d) Define Enveloping Cone.
(e) Define Elliptic Paraboloid.

Unit I

2. (a) Find the lengths, equations of exes and the eccentricity of the conic :

$$
5 x^{2}-24 x y+5 y^{2}+14 x+8 y-16=0
$$

(b) Find the equation of director circle of the conic :
$14 x^{2}-4 x y+11 y^{2}-44 x-58 y+71=0$.
3. (a) Prove that in general two parabolas can be drawn through four given points.
(b) Prove that the conics:

$$
x^{2}-y^{2}-4 x+2 y+2=0
$$

and

$$
x^{2}+3 y^{2}-4 x-6 y+4=0
$$

are confocal.

Unit II

4. (a) Find the centres of the two spheres, which touch the plane $x+2 y+2 z-5=0$ at the point $(1,1,1)$ and the sphere $x^{2}+y^{2}+z^{2}+2 x+4 y+6 z-11=0$.
(b) Two spheres of radii r_{1} and r_{2} cut orthogonally. Prove that the radius of the common circle is $\frac{r_{1} r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}}$.
P.T.O.
5. (a) Prove that the surface whose equation is :

$$
\begin{aligned}
16 x^{2} & +4 y^{2}+4 z^{2}-4 y z-8 z x \\
& +8 x y+4 x+4 y-16 z-24=0
\end{aligned}
$$

is an elliptic paraboloid.
(b) Show that the two confocal paraboloids cut everywhere at right angles.
(b) Find the locus of the centres of sections of the conicoid :

$$
a x^{2}+b y^{2}+c z^{2}=1
$$

which touch the conicoid

$$
\alpha x^{2}+\beta y^{2}+\gamma z^{2}=1
$$

Unit IV

8. (a) Find the equation of the plane which cuts the paraboloid $x^{2}-2 y^{2}=z$ in a conic with its centre at the point

$$
\left(2, \frac{3}{2}, 4\right)
$$

(b) Find the lengths of semi-axis of the sections of the paraboloid

$$
2 x^{2}+y^{2}-z=0
$$

by the plane

$$
x+2 y+z=4
$$

