- 9. (a) Discuss the variation of mass with velocity on the basis of special theory of relativity.10
 - (b) Rest mass of proton is 1.67×10⁻²⁷ kg, if it starts moving with a speed of 0.8c, then what will be its energy?5

B511

Dual Degree B.Sc. (Hons.)/M. Sc. EXAMINATION, May 2019

(Second Semester)

(Main & Re-appear)

PHYSICS

DPH102

Mechanics-II

Time: 3 Hours]

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Q. No. 1 is compulsory. Attempt *Five* questions in all including the compulsory question and select at least *one* question from each Unit. All questions carry equal marks.

(2-05/23) M-B511

P.T.O.

M-B511 4 100

Compulsory Question

- **1.** (a) What is the relation between relativistic momentum and energy ?
 - (b) Show that velocity is variant in Galilean transformation
 - (c) Differentiate between elastic and inelastic collisions.
 - (d) What do you mean by generalized Momenta?
 - (e) What will be the energy corresponding to the mass of positron (mass of positron = 9.1×10^{-31} kg). $3 \times 5 = 15$

Unit I

Write diffential equation for the forced damped harmonic oscillations and solve the differential equation.15

Or

- **3.** (a) Define the Q-factor and find the Q-value for damped oscillator. **8**
 - (b) What mass should be hang on a spiral spring having a stiffness constant (K) = 89.2 N/m, so that it vibrates with period time of one second.

M-B511 2

Unit II

4. Derive the expression for Hamilton's variationPrinciple using D'Alemberts Principle.15

Or

- 5. (a) Setup the Language for Atwood Machinde and derive an expression for its acceleration.
 - (b) What do you mean by Degree of freedom of a system, explain with example. 5

Unit III

6. Discuss in detail the effects of Centrifugal andCoriolis forces due to earth rotation.15

Or

7. Derive the transformation equation for a rotation of frame of reference.

Unit IV

8. What are the postulates of special theory of relativity and derive the Lorentz transformation equation of relativity.

(2-05/24) M-B511

3

P.T.O.