\qquad
9. (a) Discuss the variation of mass with velocity on the basis of special theory of relativity.

10
(b) Rest mass of proton is $1.67 \times 10^{-27} \mathrm{~kg}$, if it starts moving with a speed of 0.8 c , then what will be its energy ? 5

B511

Dual Degree B.Sc. (Hons.)/M. Sc. EXAMINATION, May 2019
(Second Semester)
(Main \& Re-appear)
PHYSICS
DPH102
Mechanics-II

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Q. No. 1 is compulsory. Attempt Five questions in all including the compulsory question and select at least one question from each Unit. All questions carry equal marks.
(2-05/23) M-B511
P.T.O.

Compulsory Question

1. (a) What is the relation between relativistic momentum and energy ?
(b) Show that velocity is variant in Galilean transformation.
(c) Differentiate between elastic and inelastic collisions.
(d) What do you mean by generalized Momenta ?
(e) What will be the energy corresponding to the mass of positron (mass of positron $=9.1 \times 10^{-31} \mathrm{~kg}$).
$3 \times 5=15$

Unit I

2. Write diffential equation for the forced damped harmonic oscillations and solve the differential equation.

Or

3. (a) Define the Q-factor and find the Q -value for damped oscillator.

8
(b) What mass should be hang on a spiral spring having a stiffness constant $(\mathrm{K})=$ $89.2 \mathrm{~N} / \mathrm{m}$, so that it vibrates with period time of one second.

Unit II

4. Derive the expression for Hamilton's variation Principle using D'Alemberts Principle.

Or
5. (a) Setup the Language for Atwood Machinde and derive an expression for its acceleration.
(b) What do you mean by Degree of freedom of a system, explain with example.

Unit III

6. Discuss in detail the effects of Centrifugal and Coriolis forces due to earth rotation.

Or

7. Derive the transformation equation for a rotation of frame of reference.

Unit IV

8. What are the postulates of special theory of relativity and derive the Lorentz transformation equation of relativity.
