(b) Offering suitable explanation, write down how will you identify A, B, C and D in the following transformation with the help of IR spectroscopy:5

- (c) Explain the effect of hybridization on the force constant of the bond in IR. 4
- (d) How would you distinguish between the following on the basis of IR: 6

4

No. of Printed Pages: 08 Roll No.

CC-297

M. Sc. EXAMINATION, Dec. 2018

(Third Semester)

(Main & Re-appear)

CHEMISTRY

CH613B

Organic Chemistry Special-I (Organic Spectroscopy)

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt Five questions in all, selecting at least one question from each Unit.

(2-22/17) M-CC-297 P.T.O.

Unit I

- 1. (a) Why a polar solvent usually shift $\pi \pi^*$ transition to longer wavelength and $n \pi^*$ transition to shorter wavelength? 5
 - (b) Calculate λ_{max} for the following compounds:

(iii)
$$\bigcap_{O}^{NH_2}$$

2

M-CC-297

- (c) Discuss the structural features that may produce a bathochromic or a hypsochromic effect in the UV-Vis. spectra an organic compound.
- 2. (a) Write briefly about: 9
 - (i) Chromophores and Auxochrome
 - (ii) Far and near UV regions
 - (iii) Molar extinction coefficient.
 - (b) Expalin, why β -carotene absorbs in visible range and what is the colour absorbed?
 - (c) Based upon electronic transitions, the selection rules and Beer-Lamber law, explain the UV spectroscopy.

Unit II

3. (a) How will you ascertain whether a disubstituted benzene is ortho, meta or para on the basis of IR spectroscopy? **5**

(2-22/18) M-CC-297

3

P.T.O.

- (c) In the mass spectrum of cyclohexanone, some prominent peaks appear at m/z value of 98, 83, 70, 50 (base peaks) and 42. What are most probable species responsible for these peaks?

 5
- (d) Explain, Mclafferty rearrangement with mechanism by taking example of: 5
 CH₃CD₂CH₂CH₂COCH₃.
- 8. (a) How could the following pairs of compound be differentiate by mass spectrometry?
 - (i) Ethyl amine and Diethyl amine
 - (ii) 3-methylcyclohexene and 4-methylcyclohexane
 - (iii) 2° and 3° alcohol
 - (iv) But-1-ene and but-2-ene
 - (b) Comment upon salient features of mass spectra of compounds containing: 8
 - (i) Two Chlorine and one bromine atoms
 - (ii) Two Chlorine and two bromine atoms
 - (c) What is significance of M, M+1, and M+2 peaks in mass spectrometry. 4

4. (a) Offering suitable explanation, arrange the following compounds in order of increasing value of C = C stretching band in their IR spectra.

- (b) A hydrocarbon containing 10% hydrogen shows the following bands in its IR spectrum: 3295, 2130 and 625 cm⁻¹. Deduce the structure of the hydrocarbon.
- (c) An organic compound, C7H8O3 shows the following bands in the IR spectrum: 3000-2600 cm⁻¹ (s, br), 1680 (s), 1600 (m), 1590 (m), 1340 (m), 1300 (sharp), 817 (s), 710 (s). Deduce the structure of compound.
- (d) How would you distinguish between the following on the basis of IR: 5
 - (i) Fermi resonance and overtone
 - (ii) Primary, secondary and tertiary amines.

(2-22/19) M-CC-297 5 P.T.O.

Unit III

5.	(a)	Explain in detail what do you under	rstand
		by terms CW NMR and FT NMR.	What
		are the advantages of pulsed FT	NMR
		over CW NMR ?	8
	4.		

- (b) An organic compound of molecular formula C₆H₁₀ absorbs only one mole of hydrogen on catalytic hydrogenation. Its 1H-NMR spectrum records signals at δ 4.82 (2H), 2.22 (4H), 1.65 (4H). Propose the structure.
- (c) How will you distinguish between inter and intra molecular hydrogen bonding on the basis of PMR spectroscopy?
- (d) What do you understand by shielding and Deshielding of nucleus in NMR spectroscopy?
- 6. (a) Explain anisotropic effect in acetylene, athylene and benzene. 5
 - (b) Write short notes on the following:
 - (i) Lanthanide shift reagent
 - (ii) Nuclear Overhauser effect.

6

(c) Giving suitable explanations, deduce the structure of compound having following data:

5

 $Molecular\ formula\ :\ C_9H_9O_2Cl$

¹H-NMR : δ 7.06-7.14 (5H, m), 6.17 (2H, s), 3.51 (2H, s)

¹³C-NMR : δ 171.3. 134.8. 129.8, 129.2, 127.6, 68.5, 45.2

(d) How can you differentiate between *ortho*,
 meta and *para*-dichlorobenzene on the basis of ¹³C-NMR spectroscopy?

Unit IV

- 7. (a) Predict the framgmentation pattern of the following compounds:
 - (i) Diphenylether
 - (ii) Benzyl alcohol
 - (iii) Nitrobenzene.

(b) Define octant rule and give its applications. 5

5

(2-22/20) M-CC-297 7 P.T.O.