Unit IV

- 7. (a) State and prove Konigsberg Bridge problem.
 - (b) Prove that a connected graph G is a Euler path if and only if it can be decomposed into circuits.
- 8. (a) Prove that the number of vertices is one more than the number of edges in a tree.

 Is the converse true? Justify.
 - (b) Explain tree searching with examples.

No. of Printed Pages: 04 Roll No.

Roll No.

CC-313

M. Sc. EXAMINATION, Dec. 2017

(Third Semester)

(Main & Re-appear)

MATHEMATICS

MAT-605-B

Discrete Mathematics

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-57/1) M-CC-313 P.T.O.

Unit I

- 1. (a) Developing a recurrency relation, find the number of bit strings of length and that does not contain the pattern 111.
 - (b) Find the explicit formula for the sequence:

$$a_n = r_1 a_{n-1} + r_2 a_{n-2}$$

if its characteristic equation has two distinct roots.

2. (a) Find the total solution of the difference equation :

$$a_n - a_{n-1} - 2a_{n-2} = 3n.4^n$$

(b) Explain convolution of numeric functions and hence find the generating function of the sequence $a_n = n + 1$.

Unit II

3. (a) A doctor gives a prescription of 20 tablets to a patient with the instructions to take at least one tablet per day for 15 days.

M-CC-313 2

Show that there is a period of consecutive days during which the patient takes a total of 9 tablets.

- (b) Explain basic logical operations with truth tables and one example of each.
- **4.** (a) Define lattice as an algebraic system and hence show that partial order and lub and glb exists in a lattice.
 - (b) The direct product of two distributive lattices is a distributive lattice.

Unit III

5. (a) Define a boolean algebra with its axioms and prove that :

$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$

for all a, b, c in a boolean algebra.

- (b) Explain logical gates with truth tables and symbols.
- **6.** (a) Explain full-adder.
 - (b) Find the Boolean expression E(x, y, z) corresponding to the truth table T(E) = 01001001 and T(E) = 00010001.

(2-57/2) M-CC-313

3

P.T.O.