CC317

M. Sc. EXAMINATION, 2020

(Third Semester)

(B. Scheme) (Re-appear Only)

MATHEMATICS

MAT615B

Mechanic of Solids-I

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Define Contraction and also prove that the result of applying a contraction to a tensor of order n is a tensor of order n-2.
 - (b) Prove that eigen vectors corresponding to two distinct eigen values of a real, symmetric tensor u_{ij} are orthogonal. 10
- 2. (a) Find eigen values and eigen vectors of second order tensor u_{ij} whose matrix representation:

$$u_{ij} = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) Obtain the three scalar invariant of a second order symmetric tensor and also define symmetric tensor.

10

Unit II

- 3. (a) Write a note on geometrical interpretation of shearing strain.
 - (b) Show that normal to the quadric surface at the end point of a radius vector is parallel to the displacement vector.

 5
- 4. (a) Prove that for a strain tensor e_{ij} there exist at least three principal direction which are usually orthogonal due to an infinitesimal deformation.
 - (b) Prove that principal strains are invariant.

Unit III

5. (a) Write notes on the following:

10

5

- (i) Normal and tangential stress
- (ii) Cauchy reciprocal relation.
- (b) The stress matrix at a certain point in a material is given by $\tau_{ij} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$.

Find the normal stress and shear stress on the octahedral plane elements through the point.

6. Elaborate balance of angular momentum.

20

Unit IV

7. (a) What is generalised Hooke's law for an isotropic medium in terms of stress.

10

(b) Find the stress with the following displacement field:

10

- (i) u = kyz, v = kzx, w = kxy
- (ii) u = kyz, v = kzx, $w = (x^2 y^2)$,

k is constant.

(2)(OCT-20)M-CC317

- 8. (a) Evaluate strain energy function for the stress field. Given that $\tau_{11}=0=\tau_{22}=\tau_{33}=\tau_{12}$ and $\tau_{13}=-\mu < x_2, \ \tau_{23}=+\mu < x_3.$
 - (b) Find whether the following stress system can be a solution of an electrostatic problem in the absence of body force are:

$$\tau_{11} = x_1 x_2, \ \tau_{22} = x_3 x_1, \ \tau_{12} = x_3^2, \ \tau_{13} = \tau_{33} = \tau_{32} = 0$$