No. of Printed Pages: 03	Roll No
--------------------------	---------

CC312

M.Sc. EXAMINATION, May 2019

(Third Semester)

(B. Scheme) (Re-appear)

MATHEMATICS

MAT603B

Partial Differential Equations

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-36/22)M-CC312

P.T.O.

Unit I

- (a) Define partial differential equation and find the solution of non-homogeneous transport equation.
 - (b) Define Laplace equation and obtain fundamental solution for Laplace equation.10
- 2. (a) State and prove Harnack's inequality.

10

(b) Show that the solution of Poisson's equation inunique. 10

Unit II

3. Construct the Green function for half space.

20

4. Find the solution of equation :

$$u_{tt} - \Delta u = f(x, t) \text{ in } \mathbb{R}^3 \times (0, \infty)$$

 $u - 0 = u_t = 0, \text{ on } \mathbb{R}^3 \times (t = 0)$ 20

M-CC312

2

Unit III

5. Solve the Hamilton Jacobi equation:

$$\mu_t + H(D\mu) = 0$$
, in $\mathbb{R}^n \times (0, \infty)$

where H is Hamilton.

20

- **6.** (a) Explain Hope-Lax formula. **10**
 - (b) Solve the Quasi-Linear parabolic equation :

$$\mu_t = 9\Delta u + b|\mathrm{D}\mu|^2 = 0$$
, in $\mathrm{R}^n \times (0, \infty)$

$$\mu = g$$
, on $\mathbb{R}^n \times (t = 0)$

using Cole-Hopf transformation. 10

Unit IV

- 7. State and prove Plancherel's theorem. 20
- 8. (a) What is potential functions and derive the Bernoulli's equation for unsteady motion.
 - (b) Define plane and travelling wave and obtain the exponential solution of :

$$u_t - \Delta u = 0$$
 10

(3-36/23)M-CC312

3

60