- (b) Prove that the primes of $Q(\sqrt{-3})$ are given by :
 - (i) 1 w and its associates
 - (ii) The rational primes 3x + 2 and its associates.
 - (iii) The factors a + bw of rational primes of the form 3n + 1.

where w is primitive cube root of unity.

Unit III

- **5.** (a) Find the unities of the field $Q(\sqrt{2})$. **10**
 - (b) Prove that every non-zero, non-unity algebraic integer of $Q(\sqrt{m})$ can be expressed as a product of primes in $Q(\sqrt{m})$. Give an example of a quadratic field in which uniqueness of this factorization does not hold.

4

No. of Printed Pages: 06 Roll No.

DD-314

M. Sc. EXAMINATION, May 2018

(Fourth Semester)

(Main & Re-appear)

MATHEMATICS

MAT610B

ANALYTICAL NUMBER THEORY-II

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-31/6) M-DD-314

P.T.O.

Unit I

1. (a) Define Riemann Zeta function and prove that if s > 1, then $\zeta(s) = \prod_{p} \left(\frac{1}{1 + p^{-s}} \right)$,

where the product is over all primes p.

(b) For each integer $s \ge 2$, let P(s) denote the probability that s randomly and independently chosen integers have gcd equal to 1. Then prove that : 10

$$P(s) = \frac{1}{\zeta(s)}$$

2. (a) Define Dirachlet series. Suppose

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}, \quad G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s} \text{ and}$$

$$H(s) = \sum_{n=1}^{\infty} \frac{h(n)}{n^s}$$
, where $h = f * g$. Then

prove that H(s) = F(s)G(s) for all s such that F(s) and G(s) both converge absolutely. Hense show that : 10

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}$$

M-DD-314

(b) Prove that:

$$\zeta(2K) = \frac{\left(-1\right)^{K-1} 2^{2K-1} \pi^{2K} B_{2K}}{\left(2K\right)!}$$

Unit II

- 3. (a) Define algebraic integer of a quadratic field and prove that algebraic integers of Q(i) one of the form atb_i where a + b are national integers.
 - (b) Prove that the set of Gaussian integers isa ring w.r.t. addition and multiplicationof complex numbers.5
 - (c) If α is an algebraic integer of Q(i) and $N(\alpha) = \pm p$, where p is a rotational prime. Then prove that α is a prime of Q(i). 5
- 4. (a) Prove that the fields $Q\sqrt{m}$ are Euclidean for m = -1 and m = -2.

(3-31/7) M-DD-314

3

P.T.O.

10

- $g(n) = \sum_{d/n} f(d) \mu\left(\frac{n}{d}\right) = \sum_{d/n} \mu(d) f\left(\frac{n}{d}\right)$
for all n.
- **8.** (a) Let $\wedge(n)$ be a function defined as:

$$\wedge (n) = \begin{cases} \log_e^p & \text{if } n = p^e \\ 0 & \text{otherwise} \end{cases}$$

where p is a prime and integer e > 0. Then show that $\sum_{d/n} \wedge (d) = \log_e^n$ and hence

$$\wedge (n) = \sum_{d/n} \log_e^d \mu \left(\frac{n}{d} \right) = -\sum_{d/n} \log_e^d \mu (d).$$

10

(b) Prove that for all n < 1, \exists constant A such that $A < \frac{\sigma(n)\phi(n)}{n^2} < 1$.

- 6. (a) Let π be a prime of Q(i) with add norm and let α be an algebraic integer of Q(i) s.t. $(\alpha, \pi) = 1$. Then prove that : 15 $\alpha^{\phi(\pi)} \equiv (\text{mod } \pi)$.
 - (b) Define Fibonacci numbers u_n and Lucas numbers vn and prove that : 5 $u_{p-1} \equiv 0 \pmod{p} \text{ if } p = 5n \pm 1.$

Unit IV

- 7. (a) Define multiplicative function. If g is a multiplicative function and $f(n) = \sum_{d/n} g(d) \text{ for all } n, \text{ then prove}$ that f is also multiplicative. Hence show that $\sigma(n)$ is multiplicative.
 - (b) Let f and g be be arithmetic functions. Then prove that $f(n) = \sum_{d \neq n} g(d)$ for all n iff:

(3-31/8) M-DD-314 5 P.T.O.

M-DD-314 6 100