(b) Prove that the primes of $\mathrm{Q}(\sqrt{-3})$ are given by : 10
(i) $1-w$ and its associates
(ii) The rational primes $3 x+2$ and its associates.
(iii) The factors $a+b w$ of rational primes of the form $3 n+1$.
where w is primitive cube root of unity.

Unit III

5. (a) Find the unities of the field $Q(\sqrt{2}) \cdot 10$
(b) Prove that every non-zero, non-unity algebraic integer of $\mathrm{Q}(\sqrt{m})$ can be expressed as a product of primes in $\mathrm{Q}(\sqrt{m})$. Give an example of a quadratic field in which uniqueness of this factorization does not hold.

10

DD-314

M. Sc. EXAMINATION, May 2018

(Fourth Semester)
(Main \& Re-appear)
MATHEMATICS
MAT610B
ANALYTICAL NUMBER THEORY-II

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Define Riemann Zeta function and prove
that if $s>1$, then $\zeta(s)=\prod_{p}\left(\frac{1}{1+p^{-s}}\right)$,
where the product is over all primes p.
(b) For each integer $s \geq 2$, let $\mathrm{P}(s)$ denote the probability that s randomly and independently chosen integers have gcd equal to 1 . Then prove that:

10

$$
\mathrm{P}(s)=\frac{1}{\zeta(s)}
$$

2. (a) Define Dirachlet series. Suppose
$\mathrm{F}(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}, \quad \mathrm{G}(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$ and $\mathrm{H}(s)=\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}$, where $h=f * g$. Then prove that $\mathrm{H}(s)=\mathrm{F}(s) \mathrm{G}(s)$ for all s such that $\mathrm{F}(s)$ and $\mathrm{G}(s)$ both converge absolutely. Hense show that : $\mathbf{1 0}$

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}
$$

M-DD-314
(b) Prove that :

$$
\zeta(2 \mathrm{~K})=\frac{(-1)^{\mathrm{K}-1} 2^{2 \mathrm{~K}-1} \pi^{2 \mathrm{~K}} \mathrm{~B}_{2 \mathrm{~K}}}{(2 \mathrm{~K})!}
$$

Unit II

3. (a) Define algebraic integer of a quadratic field and prove that algebraic integers of $\mathrm{Q}(i)$ one of the form $a t b_{i}$ where $a+b$ are national integers.
(b) Prove that the set of Gaussian integers is a ring w.r.t. addition and multiplication of complex numbers.
(c) If α is an algebraic integer of $\mathrm{Q}(i)$ and $\mathrm{N}(\alpha)= \pm p$, where p is a rotational prime. Then prove that α is a prime of $\mathrm{Q}(i) .5$
4. (a) Prove that the fields $\mathrm{Q} \sqrt{m}$ are Euclidean for $m=-1$ and $m=-2$.
P.T.O.
$g(n)=\sum_{d / n} f(d) \mu\left(\frac{n}{d}\right)=\sum_{d / n} \mu(d) f\left(\frac{n}{d}\right)$
for all n.
5. (a) Let $\wedge(n)$ be a function defined as:

$$
\wedge(n)=\left\{\begin{array}{lc}
\log _{e}^{p} & \text { if } n=p^{e} \\
0 & \text { otherwise }
\end{array}\right.
$$

where p is a prime and integer $e>0$. Then show that $\sum_{d / n} \wedge(d)=\log _{e}^{n}$ and hence $\wedge(n)=\sum_{d / n} \log _{e}^{d} \mu\left(\frac{n}{d}\right)=-\sum_{d / n} \log _{e}^{d} \mu(d)$.

10
(b) Prove that for all $n<1, \exists$ constant A such that $\mathrm{A}<\frac{\sigma(n) \phi(n)}{n^{2}}<1$.
6. (a) Let π be a prime of $\mathrm{Q}(i)$ with add norm and let α be an algebraic integer of $\mathrm{Q}(i)$ s.t. $(\alpha, \pi)=1$. Then prove that: $\mathbf{1 5}$ $\alpha^{\phi(\pi)} \equiv(\bmod \pi)$.
(b) Define Fibonacci numbers u_{n} and Lucas numbers $v n$ and prove that:

$$
u_{p-1} \equiv 0(\bmod p) \text { if } p=5 n \pm 1
$$

Unit IV

7. (a) Define multiplicative function. If g is a multiplicative function and $f(n)=\sum_{d / n} g(d)$ for all n, then prove that f is also multiplicative. Hence show that $\sigma(n)$ is multiplicative.
(b) Let f and g be be arithmetic functions.

Then prove that $f(n)=\sum_{d / n} g(d)$ for all n iff :

